Home
Class 12
MATHS
If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1...

If `sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3`, then

A

maximum value of `x^(2)+y^(2)` is `(49)/(3)`

B

maximum value of `x^(2)+y^(2)` is 4

C

minimum value of `x^(2)+y^(2)` is `(1)/(3)`

D

minimum value of `x^(2)+y^(2)` is 3

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

`sin^(-1)((sqrt(x))/(2))+sin^(-1)(sqrt(1-(x)/(4)))+tan^(-1)y=(2pi)/(3),x in [0,4]`
`therefore sin^(-1)((sqrt(x))/(2))+cos^(-1)((sqrt(x))/(2))+tan^(-1)y=(2pi)/(3)`
`therefore (pi)/(2)+tan^(-1)y=(2pi)/(3)`
`therefore tan^(-1)y=(2pi)/(3)-(pi)/(2)=(pi)/(6)`
`rArr =(1)/(sqrt(3))`
`therefore` maximum value of `(x^(2)+y^(2))=16+(1)/(3)=(49)/(3)`
and minimum value of `(x^(2)+y^(2))=(0)^(2)+(1)/(3)=(1)/(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

If sin^(-1)(tan(pi)/4)-sin^(-1)(sqrt(3/y))-(pi)/6=0 and x^(2)=y then x is equal to

sin^(-1)[sqrt(x^(2)-x^(3))-sqrt(x-x^(3))]=..... a) sin^(-1)x+sin^(-1)sqrt(x) b) sin^(-1)x-sin^(-1)sqrt(x) c) sin^(-1)sqrt(x)-sin^(-1)x d) 2sin^(-1)x

tan^(-1)sqrt((1-x)/(1+x))+sin^(-1)2x sqrt(1-x^(2))=(5 pi)/(12) if x=

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

y=tan^(-1)((x)/(1+sqrt(1-x^(2))))+sin(2tan^(-1)theta*sqrt((1-x)/(1+x))) then prove that ,4(1-x^(2))^(3)((d^(2)y)/(dx^(2)))^(2)+4x=x^(2)+4

Solve the equation: tan^(-1)sqrt(x^(2)+x)+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2)

The solution of the equation sin^(-1)((tan)(pi)/(4))-sin^(-1)(sqrt((3)/(x)))-(pi)/(6)=0