Home
Class 12
MATHS
cos^(- 1)sqrt((a-x)/(a-b))=sin^(- 1)sqrt...

`cos^(- 1)sqrt((a-x)/(a-b))=sin^(- 1)sqrt((x-b)/(a-b))` is possible ,if

A

`a gt x gt b`

B

`a lt x lt b`

C

`a = x = b`

D

`a gt b` and x takes any value

Text Solution

Verified by Experts

The correct Answer is:
A, B

`cos^(-1)(sqrt((a-x)/(a-b)))=sin^(-1)(sqrt(1-(a-x)/(a-b)))`
`=sin^(-1)(sqrt((x-b)/(a-b)))`
`therefore` We must have `(a-x)/(a-b)gt 0` and `(x-b)/(a-b)gt 0`
`0 le (a-x)/(a-b)lt 1` and `0 le (x-b)/(a-b)lt 1`
From both, we get `0 le (a-x)/(a-b)lt 1`
`therefore a gt x gt b` or `a lt x lt b`
Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(-1)sqrt(1-x)+sin^(-1)sqrt(1-x)=

If y=sqrt((a-x)(x-b))-(a-b)tan^(-1)sqrt((a-x)/(x-b)), then find(dy)/(dx)

If tan x=(b)/(a), then sqrt((a+b)/(a-b))+sqrt((a-b)/(a+b)) is equal to (a)2sin x/sqrt(sin2x)(b)2cos x/sqrt(cos2x)(c)2cos x/sqrt(sin2x)(d)2sin x/sqrt(cos2x)

(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x)),x in[0,1]

Find :int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))dx,x in[0,1]

The value of intsqrt(1+secx)dx is equal to (A) 2sin^-1(sqrt(2)sin(x/2))+c (B) 2cos^-1(sqrt(2)sin(x/2))+c (C) 2sin^-1(sqrt(2)cos(x/2))+c (D) none of these

The sum of the solution of the equation 2sin^(-1)sqrt(x^(2)+x+1)+cos^(-1)sqrt(x^(2)+x)=(3 pi)/(2) is 0(b)-1( c) 1 (d) 2

int sqrt((x)/(1-x))dx is equal to sin^(-1)sqrt(x)+C(b)sin^(-1){sqrt(x)-sqrt(x(1-x))}+C(c)sin^(-1){sqrt(x(1-x)}+C(d))sin^(-1)sqrt(x)-sqrt(x(1-x))+C