Home
Class 12
MATHS
The value(s) of x satisfying tan^(-1)(x+...

The value(s) of `x` satisfying `tan^(-1)(x+3)-tan^(-1)(x-3)=sin^(-1)(3/5)` may be

A

`-2`

B

`-1`

C

`2`

D

No solution

Text Solution

Verified by Experts

The correct Answer is:
D

`tan^(-1)(x+3)-tan^(-1)(x-3)="sin"^(-1)(3)/(5)`
`rArr "tan"^(-1)(6)/(1+x^(2)-9)="tan"^(-1)(3)/(4)`
`rArr 24=3x^(2)-24`
`rArr 3x^(2)=48 rArr x = pm 4`
Promotional Banner

Similar Questions

Explore conceptually related problems

The values of x satisfying "tan"^(-1) (x+3) -"tan"^(-1) (x-3) = "sin"^(-1)((3)/(5)) are

The value of x satisfying tan^-1 (x+3)- tan^-1 (x-3)=sin^-1 (3/5) are (A) -4 (B) 0 (C) 4 (D) 5

The set of values of x satisfying |tan^(-1)x|>=|cot^(-1)x| is

The value of x satisfying the equation tan^(-1)(2x)+tan^(-1)3x=(pi)/(4) is

The number of real values of x satisfying tan^(-1)((x)/(1-x^(2)))+tan^(-1)((1)/(x^(3))) is

The values of x satisfying the equation 2tan^(-1)(3x)=sin^(-1)((6x)/(1+9x^(2))) is equal to

The values of x satisfying the equation 2tan^(-1)(3x)=sin^(-1)((6x)/(1+9x^(2))) is equal to

The value of x satisfying the equation (sin^(-1)x)^(3)-(cos^(-1)x)^(3)+(sin^(-1)x)(cos^(-1)x)(sin^(-1)x-cos^(-1)x)=(pi^(3))/(16) is :