Home
Class 12
MATHS
If cos^(-1)((1-x^(2))/(1+x^(2)))+sin^(-1...

If `cos^(-1)((1-x^(2))/(1+x^(2)))+sin^(-1)((2x)/(1+x^(2)))=p` for all `x in[-1,0]`, then p is equal to

A

`(-pi)/(2)`

B

0

C

`(pi)/(2)`

D

`(2pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) + \sin^{-1}\left(\frac{2x}{1+x^2}\right) = p \] for \( x \in [-1, 0] \), we will use the properties of inverse trigonometric functions. ### Step 1: Simplifying the first term We start with the first term: \[ \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) \] Using the identity \( \cos^{-1}(y) = \tan^{-1}\left(\frac{\sqrt{1-y^2}}{y}\right) \), we can rewrite it. However, we can also recognize that: \[ \frac{1-x^2}{1+x^2} = \cos(2\theta) \text{ where } x = \tan(\theta) \] Thus, \[ \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) = 2\tan^{-1}(x) \] ### Step 2: Simplifying the second term Now, we simplify the second term: \[ \sin^{-1}\left(\frac{2x}{1+x^2}\right) \] Using the identity \( \sin^{-1}(y) = \tan^{-1}\left(\frac{y}{\sqrt{1-y^2}}\right) \), we can also recognize that: \[ \frac{2x}{1+x^2} = \sin(2\theta) \text{ where } x = \tan(\theta) \] Thus, \[ \sin^{-1}\left(\frac{2x}{1+x^2}\right) = 2\tan^{-1}(x) \] ### Step 3: Combining the results Now we can combine the results from Steps 1 and 2: \[ \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) + \sin^{-1}\left(\frac{2x}{1+x^2}\right) = 2\tan^{-1}(x) + 2\tan^{-1}(x) \] This simplifies to: \[ 2\tan^{-1}(x) + 2\tan^{-1}(x) = 4\tan^{-1}(x) \] ### Step 4: Finding \( p \) Since \( x \) ranges from \(-1\) to \(0\), we can evaluate \( \tan^{-1}(x) \): - When \( x = -1 \), \( \tan^{-1}(-1) = -\frac{\pi}{4} \) - When \( x = 0 \), \( \tan^{-1}(0) = 0 \) Thus, \( 4\tan^{-1}(x) \) will range from: \[ 4\left(-\frac{\pi}{4}\right) = -\pi \quad \text{to} \quad 4(0) = 0 \] However, since we are looking for a constant value \( p \) that holds for all \( x \) in the interval, we can evaluate the expression at \( x = 0 \): \[ p = 4\tan^{-1}(0) = 0 \] ### Final Answer Thus, the value of \( p \) is \[ \boxed{0} \]

To solve the equation \[ \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) + \sin^{-1}\left(\frac{2x}{1+x^2}\right) = p \] for \( x \in [-1, 0] \), we will use the properties of inverse trigonometric functions. ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin ^(-1)((1 - x ^(2))/(1 + x ^(2)))+ cos ^(-1) ((2x )/(1 +x ^(2)))= pi/3, then the vlaue of x is equal to

lim_(x rarr0)(cos^(-1)((1-x^(2))/(1+x^(2))))/(sin^(-1)x)

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

sin{tan^(-1)[(1-x^(2))/(2x)]+cos^(-1)[(1-x^(2))/(1+x^(2))]}=

tan^(-1)(1-x^(2)-(1)/(x^(2)))+sin^(-1)(x^(2)+(1)/(x^(2))-1) where x!=0) is equal to

sin [ tan^(-1). (1 - x^(2))/(2x) + cos^(-1) . (1-x^(2))/(1 + x^(2))] is

If x_(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x_(2) = sin^(-1) ((1 - x^(2))/(1 + x^(2))), " where " x in (0, 1) , then x_(1) + x_(2) is equal to

Consider a function f(x)="sin"^(-1) (2x)/(1+x)+"cos"^(-1) (1-x^(2))/(1+x^(2))+"tan"^(-1) (2x)/(1-x^(2))-atan^(-1)x(aepsilonR) , the value of if f(x)=0 for all x :

If 0lexle1 then sin{tan^(-1)((1-x^(2))/(2x))+cos^(-1)((1-x^(2))/(1+x^(2)))} is equal to