Home
Class 12
MATHS
Let f(x)=sin^(-1)((2x)/(1+x^(2))) and g(...

Let `f(x)=sin^(-1)((2x)/(1+x^(2)))` and `g(x)=cos^(-1)((x^(2)-1)/(x^(2)+1))`. Then tha value of f(10)-g(100) is equal to

A

`pi-2(tan^(-1)(10)+tan^(-1)(100))`

B

0

C

`2(tan^(-1)(100)-tan^(-1)(10))`

D

`2(tan^(-1)(10)-tan^(-1)(100))`

Text Solution

Verified by Experts

The correct Answer is:
C

`f(x)=sin^(-1)((2x)/(1+x^(2)))=pi-2 tan^(-1)x`, for `x ge 1`
and `g(x)=cos^(-1)((x^(2)-1)/(x^(2)+1))`
`=pi-cos^(-1)((1-x^(2))/(1+x^(2)))`
`=pi-cos^(-1)((1-x^())/(1+x^(2)))`
`=pi -2 tan^(-1)x`, for `x ge 0`
Now f(10)-g(100)
`=(pi-2tan^(-1)(10))-(pi-2tan^(-1)(100))`
`=2(tan^(-1)(100)-tan^(-1)(10))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=sin^(-1)((1)/(|x^(2)-1|))+cos^(-1)((1-2|x|)/(3))

Let f(x)=sin^(-1)((2x)/(1+x^(2))) the value of f'(2) is

f(x)=cot^(-1)((2x)/(1-x^(2))), g(x)=cos^(-1)((1-x^(2))/(1+x^(2))) then lim_(x to a)(f(x)-f(a))/(g(x)-g(a)), a in (0, (1)/(2))

If f (x) = cot ^(-1)((3x -x ^(3))/( 1- 3x ^(2)))and g (x) = cos ^(-1) ((1-x ^(2))/(1+x^(2))) then lim _(xtoa)(f(x) - f(a))/( g(x) -g (a)), 0 lt 1/2 is :

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

If f(x)=(4cos^(4)x-2cos^(2)x-(1)/(2)cos4x+2sin^(2)x-x^(9))^((1)/(9)) then the value of f(f(2)) is equal to

Let f(x)=x^(2)+xg'(1)+g''(2) and g(x)=f(1).x^(2)+xf'(x)+f''(x) then

If the function f (x)=-4e^((1-x)/(2))+1 +x+(x ^(2))/(2)+ (x ^(3))/(3) and g (x) =f ^(-1)(x), then the value of g'((-7)/(6)) equals :