Home
Class 12
MATHS
If x in[-1,(-1)/(sqrt(2))], then the inv...

If `x in[-1,(-1)/(sqrt(2))]`, then the inverse of the function `f(x)=sin^(-1)(2x sqrt(1-x^(2)))` is given by

A

`-cos.(y)/(2)`

B

`cos.(y)/(2)`

C

`-2 cos y`

D

`-2 cos y`

Text Solution

Verified by Experts

The correct Answer is:
A

For `x in [-1,(-1)/(sqrt(2))]`,
`y=-pi-2sin^(-1)x`
`rArr sin^(-1)x=(-pi)/(2)-(y)/(2)`
`rArr f^(-1)(y)=-sin((pi)/(2)+(y)/(2))=-cos.(y)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The inverse of the functions f(x)=log_(2)(x+sqrt(x^(2)+1)) is

The domain of the function f(x)=sqrt(x-sqrt(1-x^(2))) is

Computer the inverse of the function : f(x) = (x + sqrt(x^(2) + 1))

The range of the function f(x)=(sqrt(1-x^(2)))/(1+|x|) is

The function f(x)=sqrt(1-sqrt(1-x^(2)))

The function f(x)=sqrt(1+x+x^(2))-sqrt(1-x+x^(2)) is

Compute the inverse of the functions: (a) f(x)=In(x+sqrt(x² +1))

Domain of function f(x)=sqrt(x-sqrt(1-x^(2)))

The domain of the function f(x)=sqrt(1-sqrt(2-sqrt(3-sin2x))) is