Home
Class 12
MATHS
Let x1,x2,x3,x4 be four non zero numbers...

Let `x_1,x_2,x_3,x_4` be four non zero numbers satisfying the equation `tan^-1 (a/x)+tan^-1(b/x)+tan^-1(c/x)+tan^-1(d/x)=pi/2` then which ofthe following relation(s) hold good?

A

`x_(1)+x_(2)+x_(3)+x_(4)=a+b+c+d`

B

`(1)/(x_(1))+(1)/(x_(2))+(1)/(x_(3))+(1)/(x_(4))=0`

C

`x_(1)x_(2)x_(3)x_(4)=abcd`

D

`(x_(2)+x_(3)+x_(4))(x_(3)+x_(4)+x_(1))(x_(1)+x_(2)+x_(3))=abcd`

Text Solution

Verified by Experts

The correct Answer is:
B, C, D

`"tan"^(-1)(a)/(x)+"tan"^(-1)(b)/(x)+"tan"^(-1)(c )/(x)+"Tan"^(-1)(d)/(x)=(pi)/(2)`
`rArr "tan"^(-1)(a)/(x)"tan"^(-1)(b)/(x)=(pi)/(2)-("tan"^(-1)(c )/(x)+"tan"^(-1)(d)/(x))`
`rArr "tan"^(-1)((a)/(x)+(b)/(x))/(1-(ab)/(x^(2)))=(pi)/(2)-"tan"^(-1)((c )/(x)+(d)/(x))/(1-(cd)/(x^(2)))`
`rArr "tan"^(-1)((a+b)x)/(x^(2)-ab)="cot"^(-1)((c+d)x)/(x^(2)-cd)`
`rArr ((a+b)x)/(x^(2)-ab)=(x^(2)-cd)/((c-d)x)`
`rArr x^(4)-(ab+ac+ad+bc+bd+cd)x^(2)+abcd=0`
This equation has roots `x_(1),x_(2),x_(3),x_(4)`
`therefore Sigma x_(1)=0, Sigma x_(1)x_(2)=- Sigma ab, Sigma x_(1)x_(2)x_(3)=0` and `x_(1)x_(2)x_(3)x_(4)=abcd`
`therefore sum(1)/(x_(1))=0`
and `(x_(2)+x_(3)+x_(4))(x_(3)+x_(4)+x_(1))(x_(4)+x_(1)+x_(2))(x_(1)+x_(2)+x_(3))`
`=x_(1)x_(2)x_(3)x_(4)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of solutions of the equation tan^(-1)(x+1)+tan^(-1)x+tan^(-1)(x-1)=tan^(-1)3

If tan^(-1)(a/x) + tan^(-1)(b/x) =pi/2 , then: x=

The value of x satisfying the equation tan^(-1)(2x)+tan^(-1)3x=(pi)/(4) is

If tan^(-1)(a/x) + tan^(-1)(b/x) = pi/2 , then: x=……

The number of integral values of x satisfying the equation tan^(-1) (3x) + tan^(-1) (5x) = tan^(-1) (7x) + tan^(-1) (2x) is ____

tan^(-1)((a)/(x))+tan^(-1)((b)/(x))=(pi)/(2) then x=

The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 -x) = (pi)/(2) is