Home
Class 12
MATHS
Let a,b,c be the sides of a triangle ABC...

Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is

A

`pi//6`

B

`pi//3`

C

`2pi//3`

D

`5pi//6`

Text Solution

Verified by Experts

The correct Answer is:
A, D

cos(A -C) + cos B = 1
`rArr cos(A-C)-cos(A+C)=1`
`rArr 2sin A sin C=1` …..(1)
Now a= 2c, so by sine rule sin A = 2sin C …..(2)
From (1) and (2), we get `4sin^(2)C=1`
`rArr sin C=(1)/(2)`
`rArr C={(pi)/(6),(5pi)/(6)}`
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE|Exercise Comprehension Type|6 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE|Exercise Comprehension Type|6 Videos
  • SETS AND RELATIONS

    CENGAGE|Exercise Question Bank|15 Videos
  • STATISTICS

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC, cos A+cos B+cos C=

In a triangle ABC, a (b cos C - c cos B) =

If a, b, c are the sides of a triangle ABC and |(1,a,b),(1,c,a),(1,b,c)|=0, then the value of cos^2 A + cos^2 B +cos^2 C is equal to

In a triangle ABC, a cos A+b cos B+ c cos C=

In a triangle ABC,cos A+cos B+cos C

Let a, b, c be the sides of a triangle and let A, B, C be the respective angles. If b+c=3a, then find the value of the ratio cos((B-C)/2)/cos((B+C)/2)

In a triangle ABC ,cos A + cos B + cos C = 3/2 , then the triangle ,is

If a, b, c are sides of the triangle ABC and |(1,a, b),(1,c,a),(1,b,c)|=0 , then the value of cos 2A+cos 2B+cos 2C is equal to

If A,B,C are the angles of triangle ABC, then the minimum value of |{:(-2,cos C , cos B),(cos C , -1, cos A ) , (cos B , cos A , -1):}| is equal to :