Home
Class 12
MATHS
If A, B, C are the angles of a triangle ...

If A, B, C are the angles of a triangle such that `sin^(2)A+sin^(2)B=sin^(2)C`, then

A

sin A + sin B >1

B

tan A tan B = 1

C

sin A + sin B = 1

D

tan A. tan B < 1

Text Solution

Verified by Experts

The correct Answer is:
A, B

`sin^(2)A+sin^(2)B=sin^(2)C`
`rArr a^(2)+b^(2)=c^(2)`
`rArr C=(pi)/(2)` and `A, B lt (pi)/(2)`
Since `A+B=(pi)/(2) therefore tan A tan B = 1`
Also `sin A gt sin^(2) A, sin B gt sin^(2) B`
`rArr sin A + sin B gt sin^(2) A + sin^(2)B = sin^(2)C = 1`
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE|Exercise Comprehension Type|6 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE|Exercise Comprehension Type|6 Videos
  • SETS AND RELATIONS

    CENGAGE|Exercise Question Bank|15 Videos
  • STATISTICS

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

If A, B, C are the angles of a triangle then sin^(2)A+sin^(2)B+sin^(2)C-2cosAcosBcosC is equal to

If A, B, C are angles of a triangle, then sin^(2)A+sin^(2)B+sin^(2)C-2cosAcosBcosC=?

If A, B, C are the angles of a triangle, then sin 2A + sin 2B - sin 2C is equal to

In triangle ABC, if sin^(2)A+sin^(2)B=sin^(2)C then the triangle is

If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1 + sin B,1 + sin C),(sin A + sin^(2) A,sin B + sin^(2)B,sin C + sin^(2) C)|= 0 , then the triangle ABC is

In a right angled triangle ABC,write the value of sin^(2)A+sin^(2)B+sin^(2)C