Home
Class 12
MATHS
If vec a , vec b , vec ca n d vec d are...

If ` vec a , vec b , vec ca n d vec d` are four vectors in three-dimensional space with the same initial point and such that `3 vec a+2 vec b+ vec c-2 vec d=0` , show that terminals `A ,B ,Ca n d D` of these vectors are coplanar. Find the point at which `A Ca n dB D` meet. Find the ratio in which `P` divides `A Ca n dB Ddot`

Text Solution

Verified by Experts

Since `3veca-2vecb+vecc-2vecd=vec0`
`" "3veca+vecc= 2vecb+ 2vecd`
`rArr" "(3veca+vecc)/(4)= (2vecb+ 2vecd)/(4) or (3vec a+2vecd)/(3+1)= (vecb+vecd)/(2)`
Therefore, P.V. of the point dividing AC in the ratio `1 : 3` is the same as the P.V. of midpoint of BD.
So AC and BD intersect at P, whose P.V. is `(3veca+vecc)/(4) or (vecb+vecd)/(2)`. Point P divides AC in the ratio `3 : 1` and BD in the ratio `1 : 1`.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Subjective)|14 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Single)|34 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise 1.1|20 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Question Bank|24 Videos

Similar Questions

Explore conceptually related problems

If vec a,vec b,vec c and are four vectors in three- dimensional space with the same initial point and such that 3vec a-2vec b+vec c-2vec d=0 show that terminals A,B,CandD of these vectors are coplanar.Find the point at which P ACandBD meet.Find the ratio in which P divides ACandBD.

If vec a , vec b , vec c and vec d are the position vectors of points A, B, C, D such that no three of them are collinear and vec a + vec c = vec b + vec d , then ABCD is a

The vectors vec a,vec b,vec c,vec d are coplanar then

If vec a,vec b,vec c and vec d are the position vectors of the points A,B,C and D respectively in three dimensionalspace no three of A,B,C,D are collinear and satisfy the relation 3vec a-2vec b+vec c-2vec d=0, then

vec a, vec b, vec c, dare any four vectors then (vec a xxvec b) xx (vec c xxvec d) is a vector Perpendicular to vec a, vec b, vec c, vec d

If vec a,vec b,vec c are three non coplanar vectors such that vec a.vec a*vec a=vec dvec b=vec d*vec c=0 then show that vec d is the null vector.

If vec a,vec b,vec c and vec d are distinct vectors such that vec a xxvec c=vec b xxvec d and vec a xxvec b=vec c xxvec d prove that (vec a-vec d)vec b-vec c!=0

If vec a, vec b, vec c and vec d are unit vectors such that (vec a xxvec b) * (vec c xxvec d) = 1 and vec a * vec c = (1) / (2)

If vec(b) and vec(c) are the position vectors of the points B and C respectively, then the position vector of the point D such that vec(BD) = 4 vec(BC) is

If vec a, vec b , vec c are three non- coplanar vectors such that vec a + vec b + vec c = alpha vec d and vec b +vec c + vec d = beta vec a, " then " vec a + vec b + vec c + vec d to equal to