Home
Class 12
MATHS
Show that the vectors 2veca-vecb+3vecc, ...

Show that the vectors `2veca-vecb+3vecc, veca+vecb-2vecc and veca+vecb-3vecc` are non-coplanar vectors (where `veca, vecb, vecc` are non-coplanar vectors).

Text Solution

Verified by Experts

Consider `2veca-vecb+3vecc=x (veca+vecb-2vecc) + y(veca+vecb-3vecc)`
or `" "2veca-vecb+3vecc= (x+y)veca+ (x+y)vecb+ (-2x-3y)vecc`
`" "x+y=2" "` (i)
`" "x+y=-1" "` (ii)
`" "-2x-3y=3" "` (iii)
Multiplying (i) by 3 and adding it to (iii), we get
`x=9`
From (i), `9+y=2 or y =-7`
Now putting `x=9 and y=-7` in (ii), we get
`" "9-7=-1`
or `2=-1`, which is not true.
Therefore, the given vectors are not coplanar.
Alternate method :
We have determinant of co-efficients as
`" "|{:(2,,-1,,3),(1,,1,,-2),(1,,1,,-3):}| = -3 ne 0`
Hence, vectors are non-coplanar.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Subjective)|14 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Single)|34 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise 1.1|20 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Question Bank|24 Videos

Similar Questions

Explore conceptually related problems

Show that the vectors veca-2vecb+3vecc,-2veca+3vecb-4vecc and - vecb+2vecc are coplanar vector where veca, vecb, vecc are non coplanar vectors

Prove that the four points 2veca+3vecb-vecc, veca-2vecb+3vecc,3veca+4vecb-2vecc and veca-6vecb+6vecc are coplanar where veca,vecb,vecc are non-coplanar vectors

If vecA,vecB and vecC are coplanar vectors, then

If veca,vecb,vecc are coplanar, show that veca+vecb, vecb+vecc, vecc+veca are also coplanar.

Prove that [vecaxxvecb, vecbxxvecc, veccxxveca] = [[veca.veca, veca.vecb, veca.vecc], [veca.vecb,vecb.vecb, vecb.vecc], [veca.vecc, vecb.vecc,vecc.vecc]] = [veca, vecb, vecc]^2,Hence show that vectors vecaxxvecb, vecbxxvecc, veccxxveca are non-coplanar if and only if vectors veca, vecb, vecc are non-coplanar

The position vector of three points are 2veca-vecb+3vecc , veca-2vecb+lambdavecc and muveca-5vecb where veca,vecb,vecc are non coplanar vectors. The points are collinear when

If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb).(veccxxvecd)=1 and veca.vecc=1/2 then (A) veca,vecb,vecc are non coplanar (B) vecb,vecc, vecd are non coplanar (C) vecb, vecd are non paralel (D) veca, vecd are paralel and vecb, vecc are parallel

If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)| where veca, vecb,vecc are coplanar then:

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,10vecc-23veca)]

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals