Home
Class 12
MATHS
If veca and vecb are non-collinear vecto...

If `veca and vecb` are non-collinear vectors and `vecA= (p+4q)veca+ (2p+q+1)vecb and vecB= (-2p+q+2)veca+ (2p-3q-1)vecb`, and if `3vecA= 2vecB`, then determine `p and q`.

Text Solution

Verified by Experts

Putting the values of `vecA and vecB`, and then equating the coefficients of `veca and vecb` on both sides, we get
`" "3(p+4q) = 2(-2p+q+2)`
`" "3(2p+q+1)= 2(2p-3q-1)`
`" "7p+10q=4 and 2p+9q=-5`
Solving, we get `p=2 and q=-1`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Subjective)|14 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Single)|34 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise 1.1|20 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Question Bank|24 Videos

Similar Questions

Explore conceptually related problems

IF veca and vecb are no collinear vectors and vecA=(x+4y)veca+(2x+y+1)vecb and vecB=(y-2x+2)vec+(2x-3y-1)vecb, find x and y such that 3vecA=2vecB .

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .vecb) vecb = ( 4-2x- sin y) vecb + ( x^(2) -1) vecc andd (vec. vecc) veca =veca then

Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(veca.vecb)vecb and vec=vecaxxvecb , then |vecv| is

If veca and vecb are two non collinear unit vectors and |veca+vecb|= sqrt3 , then find the value of (veca- vecb)*(2veca+ vecb)

If veca and vecb are two non collinear unit vectors and iveca+vecbi=sqrt(3) then find the value of (veca-vecb).(2veca+vecb)

If veca,vecb and vecc are three non-coplanar vectors, then the vector equation vecr-(1-p-q)veca+pvecb+qvecc represents a

If veca and vecb are non-zero, non parallel vectors, then the value of |veca + vecb+veca xx vecb|^(2) +|veca + vecb-veca xx vecb|^(2) equals

If veca and vecb be two non collinear vectors such that veca=vecc+vecd , where vecc is parallel to vecb and vecd is perpendicular to vecb obtain expression for vecc and vecd in terms of veca and vecb as: vecd= veca- ((veca.vecb)vecb)/b^2,vecc= ((veca.vecb)vecb)/b^2

If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3vecb)xx(3veca - 2vecb)=vec0 then angle between veca and vecb is