Home
Class 12
MATHS
If veca, vecb and vecc are any three non...

If `veca, vecb and vecc` are any three non-coplanar vectors, then prove that points `l_(1)veca+ m_(1)vecb+ n_(1)vecc, l_(2)veca+m_(2)vecb+n_(2)vecc, l_(3)veca+m_(3)vecb+ n_(3)vecc, l_(4)veca + m_(4)vecb+ n_(4)vecc` are coplanar if `|{:(l_(1),, l_(2),,l_(3),,l_(4)),(m_(1),,m_(2),,m_(3),,m_(4)), (n_1,,n_2,, n_3,,n_4),(1,,1,,1,,1):}|=0`

Text Solution

Verified by Experts

Points `A(l_1veca+m_1vecb+n_1vecc), B(l_2veca+m_2vecb+n_2vecc), C(l_3veca+m_3vecb+n_3vec), D(l_4veca+m_4vecb+n_4vecc)` are coplanar.
`rArr" "` Vectors
`vec(AB)=(l_1-l_2)veca+ (m_1-m_2)vecb+ (n_1-n_2)vecc`,
`vec(AC)= (l_1-l_2)veca+ (m_1-m_3)vecb+ (n_1-n_3)vecc`,
`vec(AD)= (l_1-l_4)veca+ (m_1-m_4)vecb+ (n_1-n_4)vecc`
are coplanar
`rArr" "|{:(l_1-l_2,,m_1-m_2,, n_1-n_2),(l_1-l_3,,m_1-m_3,,n_1-n_3), (l_1-l_3,,m_1-m_3,,n_1-n_4):}|=0`
Now if `|{:(l_1,,l_2,,l_3,,l_4), (m_1,,m_2,,m_3,,m_4), (n_1,,n_2,,n_3,,n_4),(1,,1,,1,,1):}|=0`
Then applying `C_2 to C_2-C_1, C_3 to C_3-C_1, C_4 to C_4 - C_1`, we have
`|{:(l_1,,l_2-l_1,,l_3-l_1,,l_4-l_1), (m_1,,m_2-m_1,,m_3-m_1,,m_4-m_1), (n_1,,n_2-n_1,,n_3-n_1,,n_4-n_1),(1,,0,,0,,0):}|=0`
or `|{:(l_1-l_2,,m_1-m_2,,n_1-n_2), (l_1-l_3,,m_1-m_3,,n_1-n_3), (l_1-l_3,,m_1-m_3,,n_1-n_4):}|=0`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Subjective)|14 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Single)|34 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise 1.1|20 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Question Bank|24 Videos

Similar Questions

Explore conceptually related problems

If vec a,vec b and vec c are any three non-coplanar vectors,then prove that points l_(1)vec a+m_(1)vec b+n_(1)vec c,l_(2)vec a+m_(2)vec b+n_(2)vec c,l_(3)vec a+m_(3)vec b+n_(3)vec c,l_(4)vec a+m_(4)vec b+n_(4)vec c are coplanar if [[n_(1),n_(2),n_(3),n_(4)1,1,1,1]]=0

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,10vecc-23veca)]

If veca, vecb and vecc are non-coplanar vectors, prove that the four points 2veca+3vecb-vecc, veca-2vecb+3vecc, 3veca+4vecb-2vecc and veca-6vecb+ 6 vecc are coplanar.

If veca, vecb and vecc are three non-zero, non-coplanar vectors,then find the linear relation between the following four vectors : veca-2vecb+3vecc, 2veca-3vecb+4vecc, 3veca-4vecb+ 5vecc, 7veca-11vecb+15vecc .

If veca, vecb, vecc are non-coplanar vectors, prove that the following vectors are coplanar. (i) 3veca - vecb - 4vecc, 3veca - 2vecb + vecc, veca + vecb + 2vecc (ii) 5veca +6vecb + 7vecc, 7veca - 8vecb + 9vecc, 3veca + 20 vecb + 5vecc

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

If veca,vecb,vecc are non coplanar vectors, prove that the following points are coplanar: 6veca+2vecb-vecc, 2vecavecb+3vecc, -veca+2becb-4vecc, -12veca-vecb-3vecc

If veca,vecb,vecc are non coplanar vectors, prove that the following points are coplanar: 6veca-4vecb+10vecc, -5vecas+3vecb-10vecc, 4veca-6vecb-10vecc,2vecb+10vecc