Home
Class 12
MATHS
If veca, vecb and vecc are three non-zer...

If `veca, vecb and vecc` are three non-zero, non-coplanar vectors,then find the linear relation between the following four vectors : `veca-2vecb+3vecc, 2veca-3vecb+4vecc, 3veca-4vecb+ 5vecc, 7veca-11vecb+15vecc`.

Text Solution

Verified by Experts

Any vector `vecr` can be uniquely expressed as a linear combinatioin of three non-coplanar vectors.
Let us choose that
`" "7veca -11 vecb + 15 vecc= x(veca-2vecb+ 3vecc) + y (2veca-3vecb+4vecc)+ z(3veca-4vecb+5vecc)`
Comparing the coefficients of `veca, vecb and vecc` on both sides, we get
`x+2y+3z=7, -2x-3y-4z=-11, 3x+4y+ 5z=15`
Eliminating x and then solving for `y and z`, we get x=1, y=3, z=0`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Subjective)|14 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Single)|34 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise 1.1|20 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Question Bank|24 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc , be three on zero non coplanar vectors estabish a linear relation between the vectors: veca+3vecb=3vecc, veca-2vecb+3vecc, vec+5vecb-2vecc,6veca=14vecb+4vecc

If veca, vecb, vecc , be three on zero non coplanar vectors estabish a linear relation between the vectors: 7vec+6vecc, veca+vecb+vec, 2veca-vecb+vecc, vec-vecb-vecc

If veca, vecb and vecc are non - zero vectors such that veca.vecb= veca.vecc ,.the find the goemetrical relation between the vectors.

Examine whather followig vectors are coplanar or nto: veca+vecb-vecc, veca-3vecb+vecc nd 2veca-vecb-vecc

If veca, vecb, vecc are non-coplanar vectors, prove that the following vectors are coplanar. (i) 3veca - vecb - 4vecc, 3veca - 2vecb + vecc, veca + vecb + 2vecc (ii) 5veca +6vecb + 7vecc, 7veca - 8vecb + 9vecc, 3veca + 20 vecb + 5vecc

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

If veca,vecb,vecc are non coplanar vectors, prove that the following points are coplanar: 6veca+2vecb-vecc, 2vecavecb+3vecc, -veca+2becb-4vecc, -12veca-vecb-3vecc

If veca,vecb,vecc are non zero and non coplanar vectors show that the following vector are coplanar: 5veca+6vecb+7vecc,7veca-8vecb+9vecc, 3veca+20vecb+5vecc

If veca,vecb,vecc are non coplanar vectors, prove that the following points are coplanar: 6veca-4vecb+10vecc, -5vecas+3vecb-10vecc, 4veca-6vecb-10vecc,2vecb+10vecc

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca