Home
Class 12
MATHS
A point O is the centre of a circle circ...

A point O is the centre of a circle circunscribed about a triangle ABC. Then , `vec OA sin 2A + bvec OB sin 2B + vec OC sin 2C ` is equal to

A

`(vec(OA) + vec(OB) + vec(OC)) sin 2A`

B

` 3 vec(OG)`, where G is the centroid of triangle ABC

C

`vec0`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

The position vector of the point O with respect to itself is
`(vec(OA) sin 2A + vec(OB) sin2B + vec(OC) sin 2C)/(sin 2A + sin 2B + sin 2C)`
`rArr (vec(OA) sin 2A + vec(OB) sin 2B + vec(OC) sin 2C)/( sin2A + sin 2B + sin 2C) = vec0`
or `" "vec(OA) sin 2A + vec(OB) sin 2B + vec(OC) sin 2C = vec0`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Multiple)|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Reasoning Questions)|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Subjective)|14 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Question Bank|24 Videos

Similar Questions

Explore conceptually related problems

A point 0 is the centre of a circle circunscribed about a triangle ABC.Then,vec OA sin2A+bvec OB sin2B+vec OC sin2C is equal to

In Delta ABC,2R^(2)sin A sin B sin C is equal to

In triangle ABC,the value of sin2A+sin2B+sin2C is equal to

Prove that in a triangle ABC , sin^(2)A - sin^(2)B + sin^(2)C = 2sin A *cos B *sin C .

In a Delta ABC, if sin^(2)A+cos^(2)C=cos^(2)B then sin B cos C+cos C sin A is equal to

If O is the circumcentre,G is the centroid and O' is orthocentre or triangle ABC then prove that: vec OA+vec OB+vec OC=vec OO

CENGAGE-INTRODUCTION TO VECTORS -Exercise (Single)
  1. Let ABC be a triangle the position vectors of whose vertices are respe...

    Text Solution

    |

  2. If |veca+ vecb| lt | veca- vecb|, then the angle between veca and vecb...

    Text Solution

    |

  3. A point O is the centre of a circle circunscribed about a triangle ABC...

    Text Solution

    |

  4. If G is the centroid of a triangle A B C , prove that vec G A+ vec G ...

    Text Solution

    |

  5. If vec a\ is a non zero vecrtor iof modulus vec a\ a n d\ m is a no...

    Text Solution

    |

  6. ABCD a parallelogram, and A1 and B1 are the midpoints of sides BC and ...

    Text Solution

    |

  7. The position vectors of the points P and Q with respect to the origin ...

    Text Solution

    |

  8. A B C D is a quadrilateral. E is the point of intersection of th...

    Text Solution

    |

  9. The vector vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are sides...

    Text Solution

    |

  10. A, B, C and D have position vectors veca, vecb, vecc and vecd, repecti...

    Text Solution

    |

  11. If veca and vecb are two unit vectors and theta is the angle between t...

    Text Solution

    |

  12. let us define , the length of a vector as |a| + |b| +|c| . this defini...

    Text Solution

    |

  13. Given three vectors veca=hati-3hatj,vecb=2hati-thatj and vecc=-2hati+2...

    Text Solution

    |

  14. If vecalpha+ vecbeta+ vecgamma=a vecdeltaa n d vecbeta+ vecgamma+ vec...

    Text Solution

    |

  15. In triangle A B C ,/A=30^0,H is the orthocenter and D is the midpoint ...

    Text Solution

    |

  16. Let vecr1, vecr2,……vecrn be the position of points P1,P2,………,Pn respec...

    Text Solution

    |

  17. Given three non-zero, non-coplanar vectors veca, vecb and vecc. vecr1=...

    Text Solution

    |

  18. If the vectors vec a and vec bare linearly independent and satisfying ...

    Text Solution

    |

  19. In a trapezium ABCD the vector B vec C = lambda vec(AD). If vec p = ...

    Text Solution

    |

  20. Vectors veca = hati+2hatj+3hatk, vec b = 2hati-hatj+hatk and vecc= 3ha...

    Text Solution

    |