Home
Class 12
MATHS
If non-zero vectors veca and vecb are eq...

If non-zero vectors `veca and vecb` are equally inclined to coplanar vector `vecc`, then `vecc` can be

A

`(|veca|)/(|veca|+2|vecb|)veca + (|vecb|)/(|veca| + |vecb|) vecb`

B

`(|vecb|)/(|veca| + |vecb|) veca + (|veca|)/(|veca|+ |vecb|) vecb`

C

`(|veca|)/(|veca|+2|vecb|)veca + (|vecb|)/(|veca|+ 2|vecb|)vecb`

D

`(|vecb|)/(2|veca| + |vecb|) veca + (|veca|)/(2|veca|+ |vecb|) vecb`

Text Solution

Verified by Experts

The correct Answer is:
B, D

Since `veca and vecb` are equally inclined to `vecc, vecc` must be of the form `t((veca )/(|veca|)+ (vecb)/(|vecb|))`.
Now `(|vecb|)/(|veca | + |vecb|) veca + (|veca|)/(|veca| + |vecb|) vecb`
`" " = (|veca||vecb|)/(|veca| + |vecb|) ((veca)/(|veca|)+ (vecb)/(|vecb|))`
Also, `(|vecb|)/(2|veca|+ |vecb|) veca + (|veca|)/(2|veca|+|vecb|) vecb`
`" "= (|veca||vecb|)/(2|veca|+ |vecb|)((veca)/(|veca|)+ (vecb)/(|vecb|))`
Other two vectors cannot be written in the form
`t((veca)/(|veca|)+ (vecb)/(|vecb|))`.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Reasoning Questions)|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise LINKED COMPREHENSION TYPE|2 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Single)|34 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Question Bank|24 Videos

Similar Questions

Explore conceptually related problems

If (vecaxxvecb)xx(vecbxxvecc)=vecb, where veca,vecb and vecc are non zero vectors then (A) veca,vecb and vecc can be coplanar (B) veca,vecb and vecc must be coplanar (C) veca,vecb and vecc cannot be coplanar (D) none of these

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,10vecc-23veca)]

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

Given three vectors veca, vecb and vecc are non-zero and non-coplanar vectors. Then which of the following are coplanar.

Let vecr be a non - zero vector satisfying vecr.veca = vecr.vecb =vecr.vecc =0 for given non- zero vectors veca vecb and vecc Statement 1: [ veca - vecb vecb - vecc vecc- veca] =0 Statement 2: [veca vecb vecc] =0

If veca, vecb and vecc are unit coplanar vectors , then the scalar triple porduct [2 veca -vecb" " 2vecb - vecc " "2vecc-veca] is

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb and vecc are three non-zero, non-coplanar vectors,then find the linear relation between the following four vectors : veca-2vecb+3vecc, 2veca-3vecb+4vecc, 3veca-4vecb+ 5vecc, 7veca-11vecb+15vecc .

For three non - zero vectors veca, vecb and vecc , if [(veca, vecb , vecc)]=4 , then [(vecaxx(vecb+2vecc), vecbxx(vecc-3veca), vecc xx(3veca+vecb))] is equal to