Home
Class 12
MATHS
In a four-dimensional space where uni...

In a four-dimensional space where unit vectors along the axes are ` hat i , hat j , hat ka n d hat l ,a n d vec a_1, vec a_2, vec a_3, vec a_4` are four non-zero vectors such that no vector can be expressed as a linear combination of others and `(lambda-1)( vec a_1- vec a_2)+mu( vec a_2+ vec a_3)+gamma( vec a_3+ vec a_4-2 vec a_2)+ vec a_3+delta vec a_4=0,` then a. `lambda=1` b. `mu=-2//3` c. `gamma=2//3` d. `delta=1//3`

A

`lamda =1`

B

`mu = -2//3`

C

`gamma = 2//3`

D

`delta = 1//3`

Text Solution

Verified by Experts

The correct Answer is:
A, B, D

`(lamda -1) (veca_1 - veca_2) + mu(veca_2 + veca_3)+ gamma (veca_3 + veca_4- 2veca_2) + veca_3 + deltaveca_4 = vec0`
i.e., `(lamda -1) veca_1 + (1-lamda +mu- 2gamma)veca_2 + (mu + gamma +1)veca_3 + ( gamma + delta) veca_4=vec0`
Since `veca_1, veca_2, veca_3 and veca_4` are linearly inependent, we have
`lamda-1 =0, 1-lamda + mu - 2gamma =0, mu+gamma +1=0 and gamma +delta =0`
i.e., `lamda =1, mu=2gamma, mu +gamma+1 =0, gamma +delta =0`
Hence, `lamda =1, mu = - (2)/(3), gamma = - (1)/(3), delta = (1)/(3)`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Reasoning Questions)|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise LINKED COMPREHENSION TYPE|2 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Single)|34 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Question Bank|24 Videos

Similar Questions

Explore conceptually related problems

If vec a= hat i+ hat j+ hat k , vec c= hat j- hat k , vec adot vec b=3 and vec ax vec b= vec c , then vec b is equal to

If vec a=hat i+hat j+hat k and vec b=hat j-hat k, find a vector vec c such that vec a x vec c=vec b and vec a*vec c=3

Show that the vectors a,b,c given by vec a=hat i+2hat j+3hat k,vec b=2hat i+hat j+3hat k and vec c=hat i+hat j+hat k are non-coplanar.Express vector vec d=2hat i-3hat k as a liner combination of the vectors vec a,vec b, and vec c

If vec a = hat i + hat j, vec b = hat i + hat k, vec c = hat k + hat i, a unit vector parallel to vec a + vec b + vec c

Given three vectors vec a=6 hat i-3 hat j , vec b=2 hat i-6 hat ja n d vec c=-2 hat i+21 hat j such that vecalpha= vec a+ vec b+ vec c Then the resolution of the vector vecalpha into components with respect to vec aa n d vec b is given by a. 3 vec a-2 vec b b. 3 vec b-2 vec a c. 2 vec a-3 vec b d. vec a-2 vec b

vec(P)+vec(Q) is a unit vector along x-axis. If vec(P)= hat(i)-hat(j)+hat(k) , then what is vec(Q) ?

Find the angle between the vectors vec a and vec b where: vec a=hat i-hat j and vec b=hat j+hat k

Two vectors are given by vec a=-2hat i+hat j-3hat k and vec b=5hat i+3hat j-2hat k If 3vec a+2vec b-vec c=0 then third vector vec c is

If vec a=5hat i-hat j-3hat k and vec b=hat i+3hat j-5hat k then show that the vectors vec a+vec b and vec a-vec b are perpendicular.

If vec a=5hat i-hat j-3hat k and vec b=hat i+3hat j-5hat k then show that the vectors vec a+vec b and vec a-vec b are orthogonal.