Home
Class 12
MATHS
If ABCDEF is a regular hexagon then vec(...

If ABCDEF is a regular hexagon then `vec(AD)+vec(EB)+vec(FC)` equals :

A

2 `vec(AB)`

B

3 `vec(AB)`

C

4` A vec(AB)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

Consider the regular hexagon ABCDEF with centre at O (origin)

`vec(AD) + vec(EB) + vec(FC) = 2 vec(AO) + 2 vec(OB) + 2 vec(OC)`
`" " = 2 ( vec(AO) + vec(OB) ) + 2 vec(OC)`
`" " = 2 vec(AB) + 2 vec(AB) `
`" " ( because vec(OC) = vec(AB))`
`" " = 4 vec(AB)`
`vecR = vec(AB) + vec(AC) + vec(AD) + vec(AE) + vec(AF)`
`= vec(ED) + vec(AC) + vec(AD) + vec(AE) +vec(CD)`
`( because vec(AB) = vec(ED) and vec(AF)= vec(CD))`
`= ( vec(AC) + vec(CD)) + ( vec(AE) + vec(ED)) + vec(AD)`
`= vec(AD) + vec(AD) + vec(AD) = 3 vec(AD) = 6 vec(AO)`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise MATRIX-MATCH TYPE|3 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Numerical)|6 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise LINKED COMPREHENSION TYPE|2 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Question Bank|24 Videos

Similar Questions

Explore conceptually related problems

If ABCDEF is a regular hexagon,them vec AD+vec EB+vec FC equals 2vec AB b.vec 0 c.3vec AB d.4vec AB

If ABCDEF is a regular hexagon , then A vec D + E vec B + F vec C equals

If ABCDEF is a regular hexagon, prove that vec(AC)+vec(AD)+vec(EA)+vec(FA)=3vec(AB)

ABCDEF is a regular hexagon. Show that : vec(OA)+vec(OB)+vec(OC)+vec(OD)+vec(OE)+vec(OF)=vec(0)

In Fig. ABCDEF is a ragular hexagon. Prove that vec(AB) +vec(AC) +vec(AD) +vec(AE) +vec(AF) = 6 vec(AO) .

Assertion ABCDEF is a regular hexagon and vec(AB)=veca,vec(BC)=vecb and vec(CD)=vecc, then vec(EA) is equal to -(vecb+vecc) , Reason: vec(AE)=vec(BD)=vec(BC)+vec(CD) (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

If ABCDEF is a regular hexagon with vec AB=vec a and vec BC=vec b, then vec CE equals

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

If ABCDEF is a regular hexagon, prove that AD+EB+FC=4AB .