Home
Class 12
MATHS
In a triangle A B C ,Da n dE are points ...

In a triangle `A B C ,Da n dE` are points on `B Ca n dA C ,` respectivley, such that `B D=2D Ca n dA E=3E Cdot` Let `P` be the point of intersection of `A Da n dB Edot` Find `B P//P E` using the vector method.

Text Solution

Verified by Experts

The correct Answer is:
`8:3`

Let the vertices of the triangle be `A (vec0), B(vecb) and C(vecc)`.
Given that D divides BC in the ratio `2:1`.
Therefore, position vector of D is `(vecb + 2 vecc)/(3)`.

E divides AC in the ratio `3:1`.
Therefore, position vector of E is `(vec0+ 3 vecc)/(4) = (3vecc)/(4)`.
Let point of intersection P of AD and BE divide BE in the ratio `1:k` and AD in the ratio `1:m`. Then position vectors of P in these two cases are `(kvecb+ 1(3vecc//4))/(k+1) and (mvec0 + m ((vecb+ 2 vecc)//3))/(m+1)`, respectively.
Equating the position vectors of P in these two cases, we get
`" "(kvecb)/(k+1) + ( 3vecc)/(4(k+1))= (mvecb)/(3(m+1)) + (2mvecc)/( 3(m+1))`
`rArr (k)/(k+1) = (m)/(3(m+1)) and (3)/(4(k+1)) = (2m)/(3(m+1))`
Dividing, we have `(4k)/(3) = (1)/(2) or k = (3)/(8)`
Required ratio is `8 : 3`.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Numerical)|6 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Question Bank|24 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC,D and E are points on BC and AC, respectivley,such that BD=2DC and AE=3EC. Let P be the point of intersection of AD and BE. Find BP/PE using the vector method.

In a triangle A B C , let P a n d Q be points on A Ba n dA C respectively such that P Q || B C . Prove that the median A D bisects P Qdot

In square A B C D ,\ P\ a n d\ Q are mid-point of A B\ a n d\ C D respectively. If A B=8c m\ a n d\ P Q\ a n d\ B D intersect at O , then find area of O P B

In a A B C ,\ E\ a n d\ F are the mid-points of A C\ a n d\ A B respectively. The altitude A P\ to\ B C intersects F E\ at Qdot Prove that A Q=Q P

D a n d E are, respectively, the points on equal sides A B a n d A C of an isosceles triangle A B C such that B , C , E , a n d D are concyclic as shown in Figure. If O is the point of intersection of C D a n d B E , prove that A O is the bisector of line segment D E

In triangle A B C ,poin t sD , Ea n dF are taken on the sides B C ,C Aa n dA B , respectigvely, such that (B D)/(D C)=(C E)/(E A)=(A F)/(F B)=ndot Prove that _(D E F)=(n^2-n+1)/((n+1)^2)_(A B C)dot

In a triangle, P ,\ Q\ a n d\ R are the mid-points of sides B C ,\ C A\ a n d\ A B respectively. If A C=21\ c m ,\ B C=29 c m\ a n d\ A B=30 c m , find the perimeter of the quadrilateral A R P Q

A B C is a triangle. D is a point on A B such that D=1/4A B\ a n d\ E is a point on A C such that A E=1/4A Cdot Prove that D E=1/4B C

In Figure D\ a n d\ E are two points on B C such that B D=D E=E Cdot Show that a r(\ A B D)=\ a r\ (\ A D E)=a r\ (\ A E C)dot

A B C is a triangle in which D is the mid-point of B C ,\ E\ a n d\ F are mid-points of D C\ a n d\ A E respectively. If area of A B C is 16\ c m^2, find the area of D E F

CENGAGE-INTRODUCTION TO VECTORS -JEE Previous Year
  1. Find the all the values of lamda such that (x,y,z)!=(0,0,0)and x(hati+...

    Text Solution

    |

  2. A vector a has components a1,a2,a3 in a right handed rectangular cart...

    Text Solution

    |

  3. The position vectors of the point A, B, C and D are 3hati-2hatj -hatk,...

    Text Solution

    |

  4. Let O A C B be a parallelogram with O at the origin andO C a diagonal....

    Text Solution

    |

  5. In a triangle A B C ,Da n dE are points on B Ca n dA C , respectivley,...

    Text Solution

    |

  6. Prove, by vector method or otherwise, that the point of intersectio...

    Text Solution

    |

  7. Show, by vector methods, that the angularbisectors of a triangle are c...

    Text Solution

    |

  8. Let A(t)=f1(t)veci+f2(t)vecj and vecB(t)=g1(t)veci+g2(t)vecj, tepsilon...

    Text Solution

    |

  9. In a triangle OAB,E is the mid point of OB and D is the point on AB s...

    Text Solution

    |

  10. If |{:(a,,a^(2),,1+a^(3)),(b,,b^(2),,1+b^(3)),(c,,c^(2),,1+c^(3)):}|=0...

    Text Solution

    |

  11. If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1,...

    Text Solution

    |

  12. The points with position vectors veca + vecb, veca-vecb and veca +k ve...

    Text Solution

    |

  13. The points with position vectors 60hati+3hatj,40hati-8hatj, 40hati-8ha...

    Text Solution

    |

  14. Let a, b and c be distinct non-negative numbers. If vectos a hati +a h...

    Text Solution

    |

  15. Let veca =veci -veck, vecb = xveci+ vecj + (1-x)veck and vecc =y veci ...

    Text Solution

    |

  16. Let alpha, beta, gamma be distinct real numbers. The points with posit...

    Text Solution

    |

  17. The number of distinct values of lamda, for which the vectors -lamda^(...

    Text Solution

    |

  18. If veca=hati+hatj+hatk, vecb=4hati+3hatj+4hatk and vecc=hati+alphahatj...

    Text Solution

    |

  19. Consider the set of eight vector V={a hat i+b hat j+c hat k ; a ,bc in...

    Text Solution

    |

  20. Suppose that vecp, vecq and vecr are three non-coplanar vectors in R^...

    Text Solution

    |