Home
Class 12
MATHS
A unit vector veca in the plane of vecb=...

A unit vector `veca` in the plane of `vecb=2hati+hatj` and `vecc=hati-hatj+hatk` is such that angle between `veca` and `vecd` where `vecd=vecj+2veck` is

A

`(veci+vecj+veck)/sqrt(3)`

B

`(veci-vecj+veck)/sqrt(3)`

C

`(2veci+vecj)/sqrt(5)`

D

`(2veci-vecj)/sqrt(5)`

Text Solution

Verified by Experts

The correct Answer is:
B

Let `veca=lambdavecb+muvecc`, then `(veca.vecb)/(ab) = (veca.vecd)/(ad)`
`rArr ((lambdavecb.vecb+muvecc.vecb))/(b) = (lambdavecb.vecd+muvecc.vecd)/(d)`
`rArr (5lambda+mu)/sqrt(5) = (lambda+mu)/sqrt(5)`
`rArr lambda=0`
`therefore a=(hati-hatj+hatk)/sqrt(3)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos
  • ELLIPSE

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Vectors hata in the plane of vecb = 2 hati +hatj and vecc = hati-hatj + hatk is such that it is equally inclined to vecb and vecd " where " vecd= hatj + 2hatk the value of hata is

If vecA = hati + 2hatj - hatk , vecB = - hati + hatj - 2hatk , then angle between vecA and vecB is

Let A vector veca =alpha hati + 2hatj + beta hatk (alpha, beta in R) , veca lies in the plane of the vectors, vecb= hati + hatj and vecc= hati -hatj+4hatk . If veca bisects the angle between vecb and vecc , then :

If a=4hati+2hatj-hatk and vecb=5hati+2hatj-3hatk find the angle between the vectors veca+vecb and veca-vecb

If vecA=2hati+hatj-hatk. vecB=hati+2hatj+3hatk and vecC=6hati-2hatj-6hatk then the angle between (vecA+vecB) and vecC will be :-

If veca=hati+hatj+hatk and vecb = hati-2hatj+hatk then find vector vecc such that veca.veca = 2 and veca xx vecc = vecb

If vecA 2 hati +hatj -hatk, vecB=hati +2hatj +3hatk, vecC=6hati -2hatj-6hatk angle between (vecA+vecB) and vecC will be

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Given the vector vecA=2hati+3hatj-hatk, vecB=3hati-2hatj-2hatk & vecC=phati+phatj+phatk . Find the angle between (vecA-vecB) &vecC

The angle between the two vectors vecA=hati+2hatj-hatk and vecB=-hati+hatj-2hatk