Home
Class 12
MATHS
In a tetrahedron OABC, the edges are of ...

In a tetrahedron OABC, the edges are of lengths, `|OA|=|BC|=a,|OB|=|AC|=b,|OC|=|AB|=c.` Let `G_1 and G_2` be the centroids of the triangle ABC and AOC such that `OG_1 _|_ BG_2,` then the value of `(a^2+c^2)/b^2` is

A

2

B

3

C

6

D

9

Text Solution

Verified by Experts

The correct Answer is:
B

`vec(OG_(1)).vec(BG_(2))=0`
`rArr (a+vecb+vecc)/(3) . (a+vecc-3vecb)/(3)=0`
Now, `|vecc-veca|^(2)=b^(2), |vecc-vecb|=a^(2)` and `|veca-vecb|=c^(2)`.
`therefore 2veca.vecc=a^(2)+c^(2)-b^(2), 2vecb.vecc=b^(2)+c^(2)=a^(2)`,
`2veca.vecb=a^(2)+b^(2)-c^(2)`
Putting in the above result, we get `2a^(2)+2c^(2)-6b^(2)=0`
`rArr (a^(2)+c^(2))/b^(2)=3`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos
  • ELLIPSE

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

In a tetrahedron OABC,the edges are of lengths,|OA|=|BC|=a,|OB|=|AC|=b,|OC|=|AB|=c Let G_(1) and G_(2) be the centroids of the triangle ABC and AOC such that OG_(1)perp BG_(2), then the value of (a^(2)+c^(2))/(b^(2)) is

Let G be the centroid of a triangle ABC and O be any other point, then bar(OA)+bar(OB)+bar(OC) is equal to

If A(a,2,2),B(a,b,1) and C(1,2,-2) are the vertices of triangle ABC and G(2,1,c) is centroid, then values of a,b and c are

Q.if (2,-1,2) is the centroid of tetrahedron (OABC)/(|bar(O)G_(1)|=)=

If a,b and c are in H.P.,then the value of ((ac+ab-bc)(ab+bc-ac))/((abc)^(2)) is

Let a,b and c denote the sides BC,CA and AB rind the value of ABC. If |ab1ca1bc|=0 then find the value of s in^(2)A+s in^(2)B+s in^(2)C

If G be centroid of the triangle with vertices (1,2,0),(0,0,2) and (2,1,1) , then equations of line OG are

In triangle ABC, AB = 5. BC = 9 and AC =7. The value of tan((A-B)/2)/tan((A+B)/2) is