Home
Class 12
MATHS
Four vectors veca, vecb, vecc and vecx s...

Four vectors `veca, vecb, vecc` and `vecx` satisfy the relation `(veca.vecx)vecb=vecc+vecx` where `vecb.veca ne 1`. The value of `vecx` in terms of `veca, vecb` and `vecc` is equal to

A

`((veca.vecc)vecb-vecc(veca.vecb-1))/((veca.vecb-1))`

B

`vecc/(veca.vecb-1)`

C

`(2(veca.vecc)vecb+vecc)/(veca.vecb-1)`

D

`(2(veca.vecc)vecc+vecc)/((veca.vecb)-1)`

Text Solution

Verified by Experts

The correct Answer is:
A

`(veca.vecx)vecb=vecc+vecx`…………..(i)
taking dot with `veca`
`(veca.vecx)(vecb.veca)=(vecc.veca)+(veca.vecx)`
`therefore (veca.vecx)(vecb.veca-1)=(vecc.veca)`
`therefore (veca.vecx)=(vecc.veca)/(vecb.veca-1)`
`rArr vecx=(vecc.veca)/(vecb.veca-1)vecb-vecc`
`=((veca.vecc)vecb-vecc(veca.vecb-1))/(veca.vecb-1)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos
  • ELLIPSE

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Three vectors veca,vecb and vecc satisfy the relation veca.vecb=0 and veca.vecc=0 . The vector veca is parallel to

Three vectors vecA, vecB and vecC satisfy the relation vecA. vecB=0 and vecA. vecC=0. The vector vecA is parallel to

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-vecc, vecc-veca)] , is

For any these vectors veca,vecb, vecc the expression (veca-vecb).{(vecb-vecc)xx(vecc-veca)} equals

For any three vectors veca, vecb, vecc the value of [(veca+vecb,vecb+vecc,vecc+veca)] is

If three vectors vecA, vecB and vecC satisfy the relation vecA.vecB = 0 & vecA.vecC = 0 then the vector vecA is parallel to vecB xx vecC . Statement-2 : vecA _|_vecB and vecA_|_vecC hence A is perpendicular to plane formed by vecB and vecC .

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

If veca, vecb and vecc are vectors such that veca. vecb = veca.vecc, veca xx vecb = veca xx vecc, a ne 0. then show that vecb = vecc.

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)