Home
Class 12
MATHS
Let vecu=2hati-hatj+hatk, vecv=-3hatj+2h...

Let `vecu=2hati-hatj+hatk, vecv=-3hatj+2hatk` be vectors and `vecw` be a unit vector in the xy-plane. Then the maximum possible value of `|(vecu xx vecv)|.|vecw|` is

A

`sqrt(5)`

B

`sqrt(12)`

C

`sqrt(13)`

D

`sqrt(17)`

Text Solution

Verified by Experts

The correct Answer is:
D

`vecu xx vecv = (2hati-hatj+hatk) xx (-3hatj+2hatk)`
`=hati-4hatj-6hatk`
Let `vecw = ahati+bhatj`
We have `a^(2)+b^(2)=1`
So let `a=costheta,b=sintheta`
Now, `vecu xx vecv. vecw=a-4b=costheta-4sintheta`
Max. value `=sqrt(1^(2)+(-4)^(2))=sqrt(17)`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE|Exercise JEE Main Previous Year|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos

Similar Questions

Explore conceptually related problems

Let vecu = 2hati - hatj + hatk, vecv = -3hatj + 2hatk be vectors in R^(3) and vecw be a unit vector in the xy-plane. Then the maximum possible value of |(vecu xx vecv).vecw| is-

Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a unit vector, then the maximum value of the scalar triple product [ vecU vecV vecW] is

Let vecV=2hati+hatj-hatk and vecW=hati+3hatk . It vecU is a unit vector, then the maximum value of the scalar triple product [(vecU, vecV, vecW)] is

Let vecV=2hati+hatj-hatk and vecW=hati+3hatk. If vecU is a unit vector then the maximum value of the scalar triple product [vecU vecV vecW] is (A) -1 (B) sqrt(10)+sqrt(6) (C) sqrt(59) (D) sqrt(60)

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

If vecu and vecv are unit vectors and theta is the acute angle between them, then 2 uvecu xx 3vecv is a unit vector for

Let vecu= hati+hatj, vecv = hati -hatj and vecw = hati+2hatj+3hatk . If hatn is a unit vector such that vecu.hatn =0 and vecv.hatn=0 then find the value of |vecw.hatn|