Home
Class 12
MATHS
Let veca, vecb and vecc are three unit v...

Let `veca, vecb` and `vecc` are three unit vectors in a plane such that they are equally inclined to each other, then the value of `(veca xx vecb).(vecb xx vecc) + (vecb xx vecc). (vecc xx veca)+(vecc xx veca). (veca xx vecb)` can be

A

`9/4`

B

`-9/4`

C

`3/4`

D

`-3/4`

Text Solution

Verified by Experts

The correct Answer is:
A

Since `veca, vecb` and `vecc` are in a plane and equally inclined to each other, then angle between any two vectors is `120^(@)` and `(veca xx vecb), (vecb xx vecc)` and `(vecc xx veca)` are parallel.
So, `(veca xx vecb).(vecb xx vecc) = |veca xx vecb||vecb xx vecc|.costheta`
`=sqrt(3)/2.sqrt(3)/2.1=3/4`
Similarly, `(vecb xx vecc). (vecc xx veca) = 3/4` and `(vecc xx veca).(veca xx vecb) =3/4`
`rArr "sum"=3/4+3/4+3/4=9/4`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE|Exercise JEE Main Previous Year|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos

Similar Questions

Explore conceptually related problems

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

if veca xx vecb = vecc.vecb xx vecc = veca , " where " vecc ne vec0 then

if veca xx vecb = vecc.vecb xx vecc = veca , " where " vecc ne vec0 then

For any four vectors veca, vecb, vecc, vecd the expressions (vecb xx vecc).(veca xx vecd) +(vecc xx veca).(vecb xx vecd)+(veca xx vecb).(vecc xx vecd) is always equal to:

For any three vectors veca, vecb and vecc write value of the following veca xx (vecb + vecc) + vecb xx (vecc + veca)+ vecc xx (veca + vecb)

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

The value of veca.(vecb+vecc)xx(veca+vecb+vecc) , is

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to