Home
Class 12
MATHS
Let triangleABC be a given triangle. If ...

Let `triangleABC` be a given triangle. If `|vec(BA)-tvec(BC)|ge|vec(AC)|` for any `t in R`,then `triangleABC` is

A

Equilateral

B

Right angled

C

Isosceles

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

`|vec(BA)|^(2)+t^(2)|vec(BC)|^(2)-2vec(BA).vec(BC).t-|vec(AC)|^(2)ge0 AA t in R`
Discrimiant of the quadratic equation `le0`
`rArr 4(vec(BA).vec(BC))^(2)-4|vec(BC)|^(2)|vec(BA)|^(2)+4|vec(BC)|^(2)|vec(AC)|^(2)le0`
Using `(vec(BA).vec(BC))^(2)-|vec(BC)|^(2)|vec(BA)|^(2)`
`=-|vec(BA) xx vec(BC)|^(2)`
`rArr =-|vec(CA) xx vec(BC)|^(2)`
But `|vec(AC) xx vec(BC)|=|vec(AC)||vec(BC)|sinC`
`rArr sin^(2) Cge1`
`rArr sinC=+1 rArr angleC=pi//2`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE|Exercise JEE Main Previous Year|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos

Similar Questions

Explore conceptually related problems

In the given figure, triangleABC is an isosceles triangle in which AB = AC and angleABC = 50^(@) , the angleBDC is equal to

In a triangle ABC, if |vec(BC)|=8, |vec(CA)|=7, |vec(AB)|=10 , then the projection of the vec(AB) on vec(AC) is equal to :

triangleABC is an isosceles triangle with AC = BC. If AB^(2)= 2AC^(2) . Prove that triangle ABC is a right triangle.

Let triangleABC is a right angled triangle right angled at A such that A(1,2),C(3,1) and area of triangleABC=5sqrt(5) then abscissa of B can be

OAB is a given triangle such that vec(OA)=vec(a), vec(OB)=vec(b) . Also C is a point on vec(AB) such that vec(AB)=2vec(BC) . What is vec(AC) equal to ?

A(vec a),B(vec b),C(vec c) are the vertices of the triangle ABC and R(vec r) is any point in the plane of triangle ABC ,then r*(vec a xxvec b+vec b xxvec c+vec c xxvec a) is always equal to

P, Q, R are the mid-points of the sides BC, AC, and AB respectively of triangleABC . If G_1(overline(g_1)) and G_2(overline(g_2)) are the centroids of the triangleABC and trianglePQR respectively, then