Home
Class 12
MATHS
If veca,vecb are vectors perpendicular t...

If `veca,vecb` are vectors perpendicular to each other and `|veca|=2, |vecb|=3, vecc xx veca=vecb`, then the least value of `2|vecc-veca|` is

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
C

`vecc xx veca = vecb`
`rArr |vecc xx veca|=|vecb|`
`rArr |vecc||veca|sin(g)theta=3`
`rArr |vec|=3/(2sintheta)`
`|vecc-veca|^(2)=|vecc|^(2)+|veca|^(2)-2vecc.veca`
`=|vecc|^(2)+4-2|vecc|.|veca|costheta`
`=9/(4sin^(2)theta)+4-2.3/(sintheta).2.costheta`
`=4+9/4"cosec"^(2)theta-6cottheta`
`=9/4+(3/2cottheta-2)^(2)`
`rArr |vecc-veca|^(2)ge9/4 rArr |vecc-veca|ge3/2`
`rArr 2|vecc-veca|ge3`
`therefore "Min of " 2|vecc-veca|=3`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE|Exercise JEE Main Previous Year|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc be three units vectors perpendicular to each other, then |(2veca+3vecb+4vecc).(veca xx vecb+5vecbxxvecc+6vecc xx veca)| is equal to

If veca, vecb,vecc are three on-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

If veca,vecb,vecc are three vectors such that |veca|=2,|vecb|=4,|vecc|=4,vecb.vecc=0,vecb.veca=vecc.veca , then find the value of |veca+veca-vecc|

Let veca vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=1, |vecb|=2, |vecc| = 2 , the find the length of veca +vecb + vecc .

Let veca vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=1, |vecb|=2, |vecc| = 2 , the find the length of veca +vecb + vecc .