Home
Class 12
MATHS
If veca and vecb are two vectors such th...

If `veca` and `vecb` are two vectors such that `|veca|=1, |vecb|=4, veca.vecb=2`. If `vecc=(2veca xx vecb)-3vecb`, then the angle between `veca` and `vecc` is

A

`pi/3`

B

`pi/6`

C

`(3pi)/(4)`

D

`(5pi)/(6)`

Text Solution

Verified by Experts

The correct Answer is:
D

`|veca|=1,|vecb|=4,veca.vecb=2`
`vecc = (2veca xx vecb)-3vecb`
`rArr vecc +3vecb=2veca xx vecb`
`therefore veca.vecb=2`
`rArr |veca|.|vecb|costheta=2`
`rArr costheta=2/(|veca|.|vecb|)=2/4`
`rArr costheta=1/2`
`therefore theta=pi/3`
`rArr |vecc+3vecb|^(2)=|2veca xx vecb|^(2)`
`rArr |vecc|^(2)+9|vecb|^(2)+2vecc.3vecb=4|veca|^(2)|vecb|^(2)sin^(2)theta`
`rArr |vecc|^(2)+96+6(vecb.vecc)=0`.............(1)
`therefore vecc=2veca xx vecb-3vecb`
taking dot product with `vecb`
`rArr vecb.vecc=0-3 xx 16`
`rArr vecb.vecc=-48`
Putting value of `vecb.vecc` in equation (1)
`|vecc|^(2)+96-6 xx 48=0`
`rArr |vecc|^(2)=192`
Again, putting value of `|vecc|` in equation (1)
`192+96+6|vecb|.|vecc|cosalpha=0`
`rArr 6 xx 4 xx 8sqrt(3) cosalpha=-288`
`rArr cosalpha=(-288)/(6 xx 4 xx 8sqrt(3)) = -3/2sqrt(3)`
`rArr cosalpha=-sqrt(3)/2`
`therefore alpha=(5pi)/(6)`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE|Exercise JEE Main Previous Year|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos

Similar Questions

Explore conceptually related problems

veca and vecb are two vectors such that |veca|=1 ,|vecb|=4 and veca. Vecb =2 . If vecc = (2vecaxx vecb) - 3vecb then find angle between vecb and vecc .

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

If veca, vecb and vecc are three vectors, such that |veca|=2, |vecb|=3, |vecc|=4, veca. vecc=0, veca. vecb=0 and the angle between vecb and vecc is (pi)/(3) , then the value of |veca xx (2vecb - 3 vecc)| is equal to

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .

If veca, vecb and vecc are vectors such that veca. vecb = veca.vecc, veca xx vecb = veca xx vecc, a ne 0. then show that vecb = vecc.

If veca,vecb,vecc are three vectors such that |veca|=2,|vecb|=4,|vecc|=4,vecb.vecc=0,vecb.veca=vecc.veca , then find the value of |veca+veca-vecc|

If veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7 , then the angle between veca and vecb is

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|