Home
Class 12
MATHS
Let veca,vecb,vecc be three linearly ind...

Let `veca,vecb,vecc` be three linearly independent vectors, then `([veca+2vecb-vecc 2veca+vecb+vecc4veca-vecb+5vecc])/([vecavecbvecc])`

A

0

B

1

C

2

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
A

`vecx=veca+2vecb-vecc`
`vecy=2veca+vecb+vecc`
`vecz=4veca-vecb+5vecc`
Now `|{:(1,2,-1),(2,1,1),(4,-1,5):}|=0`
Thus, vectors are coplanar.
`rArr [veca +2vecb-vecc, 2veca+vecb+vecc , 4veca-vecb+5vecc]=0`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Solved Examples And Exercises|498 Videos
  • SEQUENCE AND SERIES

    CENGAGE|Exercise Question Bank|36 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc are linearly independent vectors, then ((veca+2vecb)xx(2vecb+vecc).(5vecc+veca))/(veca.(vecbxxvecc)) is equal to

If a,b,c are linearly independent, then ([[veca+2vecb,2vecb+vecc,5vecc+veca] ])/([vecavecbvecc])

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

Let veca,vecb,vecc be three non-zero vectors such that [vecavecbvecc]=|veca||vecb||vecc| then

Prove that [veca+vecb vecb+vecc vecc+veca]=2[vecavecbvecc]

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)=vecc=0 then (vecaxxvecb)xxvecc is

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of [veca\' vecb\' vecc\']^-1 is (A) 2[veca vecb vecc] (B) [veca,vecb,vecc] (C) 3[veca vecb vecc] (D) 0