Home
Class 12
MATHS
If veca,vecb are two unit vectors such t...

If `veca,vecb` are two unit vectors such that `veca+(veca xx vecb)=vecc`, where `|vecc|=2`, then value of `[vecavecbvecc]` is

A

0

B

`+-1`

C

`-3`

D

3

Text Solution

Verified by Experts

The correct Answer is:
D

`veca+(veca xx vecb)=vecc`
Taking dot product with `veca`, we get `veca^(2)=veca.vecc` and so `veca.vecc=1`.
Taking dot product with `vecc`, we get
`veca.vecc+(veca xx vecb) . vecc=vecc.vecc`
So `1+[vecavecbvecc]=4`
`rArr [vecavecbvecc]=3`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Solved Examples And Exercises|498 Videos
  • SEQUENCE AND SERIES

    CENGAGE|Exercise Question Bank|36 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca, vecb and vecc are three unit vectors such that veca xx (vecb xx vecc) = 1/2 vecb , " then " ( vecb and vecc being non parallel)

If veca, vecb and vecc are three unit vectors such that veca xx (vecb xx vecc) = 1/2 vecb , " then " ( vecb and vecc being non parallel)

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc +vecc + vecc.veca is equal to

Let veca,vecb,vecc be three non-zero vectors such that [vecavecbvecc]=|veca||vecb||vecc| then

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|