Home
Class 12
MATHS
If V is the volume of the parallelepiped...

If V is the volume of the parallelepiped having three coterminous edges as `veca,vecb` and `vecc`, then the volume of the parallelepiped having three coterminous edges as
`vecalpha = (veca.veca)veca+(veca.vecb)vecb+(veca.vecc)vecc`,
`vecbeta=(vecb.veca)veca+(vecb.vecb)+(vecb.vecc)vecc`
and `veclambda=(vecc.veca)veca+(vecc.vecb)vecb+(vecc.vecc)vecc` is

A

3V

B

4V

C

`V^(2)`

D

`V^(3)`

Text Solution

Verified by Experts

The correct Answer is:
D

`V=[vecavecbvecc]`
`therefore [vecalphavecbetaveclambda]=|{:(veca.veca, veca.vecb, veca.vecc),(vecb.veca, vecb.vecb, vecb.vecc),(vecc.veca, vecc.vecb, vecc.vecc):}|[vecavecbvecc]`
`=[vecavecbvecc][vecavecbvecc][vecavecbvecc]=V^(3)`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Solved Examples And Exercises|498 Videos
  • SEQUENCE AND SERIES

    CENGAGE|Exercise Question Bank|36 Videos

Similar Questions

Explore conceptually related problems

If V is the volume of the parallelopiped having three coterminous edges as veca,vecb and vecc , then the volume of the parallelopiped having three coterminous edges as vec(alpha)=(veca.veca)veca+(veca.vecb)vecb+(veca.vecc)vecc vec(beta)=(veca.vecb)veca+(vecb.vecb)vecb+(vecb.vecc)vecc vec(gamma)=(veca.vecc)veca+(vecb.vecc)vecb+(vecc.vecc)vecc is

Statement 1: If V is the volume of a parallelopiped having three coterminous edges as veca, vecb , and vecc , then the volume of the parallelopiped having three coterminous edges as vec(alpha)=(veca.veca)veca+(veca.vecb)vecb+(veca.vecc)vecc vec(beta)=(veca.vecb)veca+(vecb.vecb)vecb+(vecb.vecc)vecc vec(gamma)=(veca.vecc)veca+(vecb.vecc)vecb+(vecc.vecc)vecc is V^(3) Statement 2: For any three vectors veca, vecb, vecc |(veca.veca, veca.vecb, veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc)|=[(veca,vecb, vecc)]^(3)

The volume of a tetrahedron fomed by the coterminus edges veca , vecb and vecc is 3 . Then the volume of the parallelepiped formed by the coterminus edges veca +vecb, vecb+vecc and vecc + veca is

If [veca vecbvecc]=2 find the volume of the parallelepiped whose co-teminus edges are 2veca +vecb, 2 vecb + vecc, 2 vecc + veca.

Show that [veca vecb vecc]\^2=|(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc)|

If the volume of the parallelopiped formed by the vectors veca, vecb, vecc as three coterminous edges is 27 units, then the volume of the parallelopiped having vec(alpha)=veca+2vecb-vecc, vec(beta)=veca-vecb and vec(gamma)=veca-vecb-vecc as three coterminous edges, is

If vecA=(vecbxxvecc)/([vecb vecc vecc]), vecB=(veccxxveca)/([vecc veca vecb)], vecC=(vecaxxvecb)/([veca vecb vecc)] find [vecA vecB vecC]

If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)| where veca, vecb,vecc are coplanar then:

If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb,vecc),(veca.veca, veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|=0