Home
Class 12
MATHS
If veca, vecb and vecc are any three vec...

If `veca, vecb` and `vecc` are any three vectors forming a linearly independent system, then `AA theta in R`
`vecp=vecacostheta+vecbsintheta+vecc(cos2theta)`
`vecq=vecacos((2pi)/(3)+theta)+vecbsin((2pi)/(3)+theta) + vecc(cos 2)((2pi)/(3)+theta)`
and `vecr=vecacos(theta-(2pi)/(3))+vecbsin(theta-(2pi)/(3))+vecc cos2(theta-(2pi)/(3))`
then `[vecpvecqvecr]`

A

`[vecavecbvecc]costheta`

B

`[vecavecbvecc]cos2theta`

C

`[vecavecbvecc]cos3theta`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D

The system of vectors is coplanar, since their sum is zero.
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Solved Examples And Exercises|498 Videos
  • SEQUENCE AND SERIES

    CENGAGE|Exercise Question Bank|36 Videos

Similar Questions

Explore conceptually related problems

cos^2((pi)/(4)-theta)+cos^2((pi)/(4)+theta)=.....

If 2 sin(theta+(pi)/(3))=cos(theta-(pi)/(6)) , then tantheta =

If (x)/(cos theta)=(y)/(cos(theta-(2pi)/(2)))=(2)/(cos(theta+(2pi)/(3))), then x+y+z=

Prove that: 2cos theta cos((pi)/(3)+theta)cos((pi)/(3)-theta)=cos3 theta

Prove that: cos^(2)theta+cos^(2)((2 pi)/(3)-theta)+cos^(2)((2 pi)/(3)+theta)=(3)/(2)

cos ((3pi)/(2)+theta) cos (2pi+theta) xx [ cot ((3pi)/(2) -theta) + cot (2pi + theta) ] = ?

2cos((pi)/(2)-theta)+3sin((pi)/(2)+theta)-(3sin theta+2cos theta)=

Prove that: cos^(2)theta+cos^(2)((pi)/(3)+theta)+cos^(2)((pi)/(3)-theta)=(3)/(2)

cos((3 pi)/(2)+theta)*cos(2 pi+theta)=

sin ((pi) / (2) + theta) * cos ((3 pi) / (2) + theta) * tan ((5 pi) / (2) + theta) * cot ((7 pi) / (2) ) + theta)