Home
Class 12
MATHS
Let vecr = (veca xx vecb)sinx + (vecb xx...

Let `vecr = (veca xx vecb)sinx + (vecb xx vecc)cosy+(vecc xx veca)`, where `veca,vecb` and `vecc` are non-zero non-coplanar vectors, If `vecr` is orthogonal to `3veca + 5vecb+2vecc`, then the value of `sec^(2)y+"cosec"^(2)x+secy" cosec "x` is

A

3

B

4

C

5

D

6

Text Solution

Verified by Experts

The correct Answer is:
A

`vecr. (3veca+5vecb+2vecc)=0`
`rArr veca.(vecb xx vecc)[2sin x+3 cosy+5]=0`
`rArr 2sinx+3cosy=-5` `(therefore veca.(vecb xx vecc) ne 0)`
`rArr sinx=-1, cosy=1`
`rArr "cosec "x=-1, secy=-1`.
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Solved Examples And Exercises|498 Videos
  • SEQUENCE AND SERIES

    CENGAGE|Exercise Question Bank|36 Videos

Similar Questions

Explore conceptually related problems

Solve veca.vecr=x, vecb.vecr=y, vecc.vecr=z , where veca,vecb,vecc are given non coplanar vectors.

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

If (veca xx vecb) xx vecc = vec a xx (vecb xx vecc) , where veca, vecb and vecc are any three vectors such that veca.vecb ne 0, vecb.vecc ne 0 , then veca and vecc are:

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

[(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca) (veccxxveca) xx (veca xx vecb)] is equal to ( where veca, vecb and vecc are non - zero non- colanar vectors).

If (veca xx vecb) xx vecc = veca xx (vecb xx vecc) where veca, vecb and vecc are any three vectors such that veca.vecb =0, vecb.vecc=0 then veca and vecc are:

If vecp=2veca-3vecb, vecq=veca-2b+vecc, vecr=-3veca+vecb+2vecc, veca,vecb,vecc being non-zero, non-coplanar vectors, then -2veca+vecb-vecc is equal to