Home
Class 12
MATHS
If alpha(veca xx vecb)+beta(vecb xx vecc...

If `alpha(veca xx vecb)+beta(vecb xx vecc)+lambda(vecc xx veca)=0`, then

A

`veca,vecb,vecc` are coplanar is all `alpha,beta, lambda ne0`

B

`veca,vecb,vec` are coplanar if any one of `alpha, beta, lambda ne0`

C

`veca,vecb,vecc` are non-coplanar for any `alpha,beta,lambdane0`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A, B

we have,
`alpha(veca xx vecb) +beta(vecb xx vecc) + lambda(vecc xx veca)=0`
Taking dot product with `vecc`, we have
`alpha[vecavecbvecc]=0`
Similarly, taking dot product with b and c, we have `lamba[vecavecbvecc]=0, beta[vecavecbvecc]=0`
Now, even if one of `alpha, beta, lambda ne 0`, then we have `[vecavecbvecc]=0`
`rArr veca,vecb,vecc` are coplanar
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Solved Examples And Exercises|498 Videos
  • SEQUENCE AND SERIES

    CENGAGE|Exercise Question Bank|36 Videos

Similar Questions

Explore conceptually related problems

If vecd = gamma(veca xx vecb) + mu(vecb xx vecc) + v(vecc xx veca) and [veca vecb vecc]=1/8 , then lambda = mu + v is equal to:

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca, vecb,vecc are three on-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

if veca=hati+hatj+2hatk, vecb=hati+2hatj+2hatk and |vecc|=1 Such that [veca xx vecb vecb xx vecc vecc xx veca] has maximum value, then the value of |(veca xx vecb) xx vecc|^(2) is

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc^(2)] , then lambda is equal to

If vec a,vec b , vec c are unit vectors such that veca + vec b+ vecc = 0 and lambda = veca.vecb + vecb.vecc+vecc.veca and d = veca xx vecb + vecb xx vecc + vecc xx veca , then (lambda,vecd) is

Let veca, vecb and vecc are three unit vectors in a plane such that they are equally inclined to each other, then the value of (veca xx vecb).(vecb xx vecc) + (vecb xx vecc). (vecc xx veca)+(vecc xx veca). (veca xx vecb) can be

If (veca xx vecb) xx vecc = veca xx (vecb xx vecc) where veca, vecb and vecc are any three vectors such that veca.vecb =0, vecb.vecc=0 then veca and vecc are: