Home
Class 12
MATHS
If the vectors bara=3 hati+hatj-2 hatk ,...

If the vectors `bara=3 hati+hatj-2 hatk , barb =-hat i+ 3 hat j + 4 hat k & bar c=4 hat i-2 hatj-6 hatk` constitute the sides of a `DeltaABC`, then the length of the median bisecting the vector `bar c` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If bara =3 hati - 2hatj +7 hatk, barb = 5hati + hat j -2 hatk and barc = hati + hatj - hat k, " then find "bara * (barb xx barc) .

If the vectors vec(A) B = 3 hat(i)+4 hat (k) and vec(AC) = 5 hat(i)-2 hat(j)+4hat(k) are the sides of a triangle ABC, then the length of the median through A is

If the vectors vec(A) B = 3 hat(i)+4 hat (k) and vec(AC) = 5 hat(i)-2 hat(j)+4hat(k) are the sides of a triangle ABC, then the length of the median through A is

Show that the vectors 2 hat i - 3 hat j + hat k , - 4hati - hat j + 3 hat k and -2 hat i - 4hatj + 4 hat k are coplanar.

If bar(a)=3hat i-3hat j-4hat k, bar(b)=hat i+2hat j+hat k and bar(c)=3hat i-hat j-2hat k , then [bar(a) bar(b) bar(c)] =

( The vector )/(AB)=3hat i+4hat k and bar(AC)=5hat i-2hat j+4hat k are the sides of a triangle ABC.The length of the median through A is

Let bar a= hat i+ hat j+ hat k ,""b= hat i- hat j+2 hat k and bar c=x hat i+(x-2) hat j- hat k . If the vector c lies in the plane of a and b , then x equals

If the vectors bar A B=3 hat i+4 hat k and bar A C=5 hat i-2 hat j+4 hat k are the sides of a triangle ABC, then the length of the median through A is (1) sqrt(72) (2) sqrt(33) (3) sqrt(45) (4) sqrt(18)

If the vectors 2hat j +hat k and 3 hat i- hat j +4 hatk represent the two sides AB and AC respectively of a triangle ABC , then the length of the median through A is,