Home
Class 11
MATHS
" 19."tan^(2)x...

" 19."tan^(2)x

Promotional Banner

Similar Questions

Explore conceptually related problems

If 3 tan 2 x - 4 tan 3 x = tan ^(2) 3 x tan 2 x then x =

(d) / (dx) [((tan ^ (2) 2x-tan ^ (2) x) / (1-tan ^ (2) 2x tan ^ (2) x)) cot3x] =

Solve: tan^(2)x.tan^(2)3x.tan4x=tan^(2)x-tan^(2)3x+tan4x

Solve : tan^(2)x*tan^(2)3x*tan4x=tan^(2)x-tan^(2)3x+tan4x

Solve: tan^-1 (x+2) + tan^-1 (x-2) = tan^-1 (frac{4}{19}), x>0

Solve : tan^(-1)(x+2)+tan^(-1)(x-2)=tan^(-1)""(4)/(19),xgt0

Show that tan" "3x" "tan" "2x" "tan" "x" "=" "tan 3x - tan 2x - tan x .

If S= tan^(-1) ((1)/(n^(2) +n+1)) + tan^(-1) ((1)/(n^(2) + 2n+ 3))+ ….+ tan^(-1) ((1)/(1+(n+19) (n+20))) , then tan (s) is equal to

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .