Home
Class 12
MATHS
intcos(logx)dx is equal to (A) ...

`intcos(logx)dx` is equal to (A) `x/2(cos(logx)-sin(logx))+c` (B) `x(cos(logx)+sin(logx))+c` (C) `x/2(cos(logx)+sin(logx)+c` (D) `x(cos(logx)-sin(logx))+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

int sin(logx)dx

int(cos(logx))/(x)dx

f(x)=cos(logx) , then

f(x)=cos(logx) , then

y=x^(logx)+(logx)^(x)

d/(dx)[(cosx)^(logx)+(logx)^(x)] =

∫[sin(logx)+cos(logx)]dx

int sin(logx)+cos(logx)dx=

Find dy/dx , if y = 3cos(logx) + 4sin(logx)

(d(x^(logx)))/(d(logx))=