Home
Class 12
MATHS
lim(nto oo)(1^3+2^3...+n^3)/(n^3), is...

`lim_(nto oo)(1^3+2^3...+n^3)/(n^3)`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(nto oo)(1^2+2^2...+n^2)/(n^3) , is

lim_(n to oo) [ 1^2/n^3 + (2^2)/(n^3) + …+ ((n-1)^2)/(n^3)]

The value of [lim_(n to oo)(1+2^(4)+3^(4)+...+n^(4))/(n^(5))-lim_(n to oo)(1+2^(3)+3^(3)+...+n^(3))/(n^(5))] is equal to -

Evaluate : lim_(n-> oo) (1^4+2^4+3^4+...+n^4)/n^5 - lim_(n->oo) (1^3+2^3+...+n^3)/n^5

The value of lim_(nto0) [(1+2+3+...+n)/n^2] is

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))