Home
Class 12
MATHS
If alpha, beta, gamma are such that alph...

If `alpha`, `beta`, `gamma` are such that `alpha+beta+gamma=2`, `alpha^2+beta^2+gamma^2=6`, `alpha^3+beta^3+gamma^3=8`, then `alpha^4+beta^4+gamma^4`

Text Solution

Verified by Experts

We have,
`(alpha+beta+gamma)^(2)=alpha^(2)+beta^(2)+gamma^(2)+2(betagamma+gammaalpha+alphabeta)`
`rArr 4 = 6 + 2 (betagamma+gammaalpha+alphabeta)`
`rArr betagamma+gammaalpha+alphabeta = -1`
Also, `alpha^(3) + beta^(3) + gamma^(3) - 3alphabeta gamma`
`=(alpha+beta+gamma)(alpha^(2)+beta^(2)+gamma^(2))(betagamma+gammaalpha+alphabeta)`
or " " 8 - 3 `alpha+beta+gamma = 2(6+1)`
or `3alpha+beta+gamma = 8 - 14 = -6`
or `alpha+beta+gamma = - 2`
Now, `(alpha^(2)+beta^(2)+gamma^(2))^(2)=Sigmaalpha^(4)+2Sigmaalpha^(2)beta^(2)`
`=Sigmaalpha^(4)+2[(Sigmaalphabeta)^(2)-2alphabetagamma(Sigmaalpha)]`
or `=Sigmaalpha^(4)= 36 - 2 [(-1)^(2)-2(-2)(2)] = 18`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.1|3 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.2|5 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Comprehension|12 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|20 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are such that alpha+beta+gamma=2alpha^(2)+beta^(2)+gamma^(2)=6,alpha^(3)+beta^(3)+gamma^(3)=8, then alpha^(4)+beta^(4)+gamma^(4)

If alpha,beta,gamma are such that alpha+beta+gamma=2,alpha^(2)+beta^(2)+gamma^(2)=6,alpha^(3)+beta^(3)+gamma^(3)=8, then alpha^(4)+beta^(4)+ is a.18b.10c*15d.36

If alpha+beta+gamma=6,alpha^(2)+beta^(2)+gamma^(2)=14 and alpha^(3)+beta^(3)+gamma^(3)=36, then alpha^(4)+beta^(4)+gamma^(4)=

If alpha, beta, gamma be the zeros of the polynomial p(x) such that (alpha+beta+gamma) = 3, (alpha beta+beta gamma+gamma alpha) =- 10 and alpha beta gamma =- 24 then p(x) = ?

Q.show that det [[- alpha (2), alpha beta, gamma alphaalpha beta, -beta ^ (2), beta gammagamma alpha, beta gamma, -gamma ^ (2)]] = 4 alpha ^ (2) beta ^ (2) gamma ^ (2)

If alpha, beta, gamma are the roots of ax ^ (3) + bx ^ (2) + cx + d = 0 and det [[alpha, beta, gammabeta, gamma, alphagamma, alpha, beta]] = 0, alpha ! = beta! = gamma, alpha + beta-gamma, beta + gamma-alpha, and gamma + alpha-beta

If A=[alpha beta gamma-alpha] is such that A^(2)=I, then 1+alpha^(2)+beta gamma=0( b) 1-alpha^(2)+beta gamma=0 (c) 1-alpha^(2)-beta gamma=0 (d) 1+alpha^(2)-beta gamma=0

If alpha, beta, gamma are the cube roots of 8 , then |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)|=

sin (beta+ gamma- alpha) + sin (gamma+ alpha - beta) + sin (alpha + beta- gamma)- sin (alpha + beta + gamma)=