Home
Class 12
MATHS
If x + y + z = 12, x^(2) + Y^(2) + z^(2)...

If `x + y + z = 12, x^(2) + Y^(2) + z^(2) = 96` and `(1)/(x)+(1)/(x)+(1)/(z)= 36` . Then find the value `x^(3) + y^(3)+z^(3).`

Text Solution

Verified by Experts

To get the value of `x^(3)+Y^(3) + z^(3) - 3xyz`
`= (x + y + z ) (x^(2)+Y^(2)+x^(2) - xy- yz - zx)` …(1)
We need the value of xyz and xy + yz + zx.
We have `(x + Y + z)^(2) = 144`
`therefore x^(2)+y^(2)+z^(2)+2xy+2yz+2xz=144`
`rArr `96 + 2(xy + yz + xz) =144
`rArr `xy+ yz+ zx = 24
Given that `(1)/(x)+(1)/(x)+(1)/(z)= 36`
`therefore (xy+yz+zx)/(xyz)=36`
`rArr xyz = (24)/(36)=(2)/(3)`
From (1),
`x^(3)+y^(3)+z^(3) - 2 = 12xx(96-24)`
=864
So, `x^(3)+y^(3)+z^(3) = 866`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.1|3 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.2|5 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Comprehension|12 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|20 Videos

Similar Questions

Explore conceptually related problems

If x+y+z=12 and x^(2)+y^(2)+z^(2)=96 and (1)/(x)+(1)/(y)+(1)/(z)=36 then the value x^(3)+y^(3)+z^(3) divisible by prime number is

If x = 1, y = 2 , z = 5 , find the value of x^3 - y^3 -z^3

If x=1, y=2 and z =3 then find the value of x^3 - z^3 + y^3

If x = 1, y = 2, z = 5 , then find the value of 3x – 2y + 4z.

(2-3x)/(x)+(2-3y)/(y)+(2-3z)/(z)=0 then (1)/(x)+(1)/(y)+(1)/(z)=

If 2^(x)=3^(y)=6^(-z) find the value of ((1)/(x)+(1)/(y)+(1)/(z))

If 2^(x)=3^(y)=12^(z) show that (1)/(z)=(1)/(y)+(2)/(x)

If x = 2a- 1, y = (2a - 2) and z =3 - 4a, then the value of x ^(3) + y ^(3) + z ^(3) will be :