Home
Class 12
MATHS
Solve sqrt(3x^2-7x-30)+sqrt(2x^2-7x-5)=x...

Solve `sqrt(3x^2-7x-30)+sqrt(2x^2-7x-5)=x+5.`

Text Solution

Verified by Experts

The correct Answer is:
`x = 6, - 5//2`

`sqrt(3x^(2) - 7x - 30) + sqrt(2x^(2) - 7x - 5) = x + 5`
or `sqrt(3x^(2) - 7x - 30) =(x+5)- sqrt(2x^(2) - 7x - 5) = `
or On squaring, we get
`3x^(2) - 7x - 30 =x^(2) + 10x + 25 - 2(x+5) xxsqrt(2x^(2) - 7x - 5)+ 2x^(2) - 7x - 5`
or `10x + 50 = 2(x + 5) sqrt(2x^(2) - 7x - 5)`
`rArr x = - 5 or sqrt(2x^(2) - 7x - 5) = 5`
`rArr x = - 5 or 2x^(2) - 7x - 30 = 0`
`rArr x = - 5 or x = 6 or x = - 5//2`
But `x = - 5` does not satisfy the original equation.
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.8|11 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.9|12 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.6|4 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|20 Videos

Similar Questions

Explore conceptually related problems

If sqrt(3x^(2)-7x -30) - sqrt(2x^(2) -7x -5) = x -5 has alpha and beta as its roots, then the value of alpha beta is

Solve sqrt(5x^(2)-6x+8)-sqrt(5x^(2)-6x-7)=1

Solve sqrt(2)x^(2)+7x+5sqrt(2)=0

Solve (i) sqrt(5x^(2)-6x+8)-sqrt(5x^(2)-6x-7)=1 (ii)Solve (x^(2)-5x+7)^(2)-(x-2)(x-3)=1

Solve : sqrt(2x+7)=x+2

Solve :sqrt(2x+7)+sqrt(3x-18)=sqrt(7x+1)