Home
Class 12
MATHS
Solve sqrt(x^2+4x-21)+sqrt(x^2-x-6)=sqrt...

Solve `sqrt(x^2+4x-21)+sqrt(x^2-x-6)=sqrt(6x^2-5x-39.)`

Text Solution

Verified by Experts

The correct Answer is:
`x = 3`

We have
`sqrt(x^(2) + 4x - 21) + sqrt(x^(2) - x - 6) = sqrt(6x^(2) - 5x - 39)`
or `sqrt((x + 7)(x - 3)) + sqrt((x - 3)(x - 2)) = sqrt((x-3)((6x + 13))) (1)`
or ` sqrt(x - 3) + (sqrt(x - 7) = sqrt(x-2)-sqrt(6x + 13) ) `
`sqrt(x - 3) =0 or (sqrt(x - 7) = sqrt(x+2)-sqrt(6x + 13)= 0 `
`rArr x = 3 - or sqrt(x + 7) + sqrt(x + 2) = sqrt(6x = 13) `
Now , `sqrt(x + 7) + sqrt(x + 2) = sqrt(6x + 13)`
or `(sqrt(x + 7) + sqrt(x + 2))^(2) = sqrt(6x + 13)`
or `
or `x + 7 + x + 2+2 = sqrt((x - 7) = (x-2)) = 6x + 13`
or `2x + 9+2 = sqrt((x - 7) = (x-2)) = 6x + 13`
or `2sqrt((x - 7) = (x-2)) = 4x+ 4`
`sqrt((x - 7) = (x-2)) = 2(x+1)`
or `(x - 7) = (x-2) = 4(x+1)^(2)` (squraring both sides)
or `x^(2) + 9x + 14 = 4 (x^(2)+ 2x + 1)`
or ` 3x^(2) - x - 10 = 0`
or `(x - 2) (3x + 5) = 0`
`rArr x = 2 or x = (-5)/(3) ,` which does not satisfy (1).
Hence , x = 3 only.
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.8|11 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.9|12 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.6|4 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|20 Videos

Similar Questions

Explore conceptually related problems

Solve :sqrt(2x-6)+sqrt(x+4)=5

Solve sqrt(x-2)+sqrt(4-x)=2

sqrt(x^(2)-4)-(x-2)=sqrt(x^(2)-5x+6)

Solve sqrt(5x^(2)-6x+8)-sqrt(5x^(2)-6x-7)=1

Solve for x:sqrt(2x-1)+sqrt(3x-2)=sqrt(4x-3)+sqrt(5x-4)

(6) sqrt(5)x^(2)-2sqrt(2)x-2sqrt(5)=0

Solve for x: sqrt(11x-6)+sqrt(x-1)=sqrt(4x+5)

The number of real solutions of sqrt(x^(2)-4x+3)+sqrt(x^(2)-9)=sqrt(4x^(2)-14x+6)

If sqrt(x-2)+sqrt(4-x)=sqrt(6-x) Find x

Solve : sqrt(9+2x)-sqrt(2x)=(5)/(sqrt(9+2x)) .