Home
Class 12
MATHS
If alpha and beta are the roots of x^2 -...

If `alpha` and `beta` are the roots of `x^2 - p (x+1) - c = 0`, then the value of `(alpha^2 + 2alpha+1)/(alpha^2 +2 alpha + c) + (beta^2 + 2beta + 1)/(beta^2 + 2beta + c)`

Text Solution

Verified by Experts

The given equation os `x^(2) - px - (p + c) = 0 ` . Therefore,
` alpha + beta = p, alpha beta = - (p + c)`
So, ` (alpha + 1 ) (beta + 1) = alpha beta + (alpha + beta) + 1`
` - (p + c) + p + 1`
` = 1 - c ` (1)
Now , `(alpha^(2) + 2 alpha + 1 )/(alpha^(2) + 2alpha + c) + (beta^(2) +2 beta + 1)/(beta^(2) + 2 beta + c)`
` = ((alpha + 1)^(2))/((alpha + 1)^(2) - (1 - c)) + ((beta + 1)^(2))/((beta + 1)^(2) - (1 - c)) `
` = ((alpha + 1)^(2))/((alpha + 1)^(2) - (alpha + 1)(beta +1)) + ((beta + 1)^(2))/((beta + 1)^(2) - (alpha + 1 )(beta +1)) ` [Using (1)]
`(alpha + 1)/(alpha - beta ) + (beta + 1)/(beta - alpha ) = ((alpha + 1) - (beta +1))/(alpha - beta ) = 1` .
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.10|5 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.11|8 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.8|11 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|20 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of x^(2)-p(x+1)-c=0, then the value of (alpha^(2)+2 alpha+1)/(alpha^(2)+2 alpha+c)+(beta^(2)+2 beta+1)/(beta^(2)+2 beta+c)

If alpha and beta are the roots of equation ax^2 + bx + c = 0, then the value of alpha/beta + beta/alpha is

If alpha and beta are the roots of the equation x^(2)-p(x+1)-q=0 then the value of (alpha^(2)+2 alpha+1)/(alpha^(2)+2 alpha+q)+(beta^(2)+2 beta+1)/(beta^(2)+2 beta+q) is (A)1(B)2 (C) 3(D)0

If alpha,beta are the roots of x^(2)-k(x+1)-c=0 then (1+alpha)(1+beta)=

If alpha and beta are roots of ax^(2) + bx + c = 0 , then find the value of a((alpha^(2) + beta^(2))/(beta alpha)) + b((alpha)/(beta) + (beta)/(alpha))

If alpha and beta are the roots of 2x^(2) - x - 2 = 0 , then (alpha^(3) + beta^(-3) + 2alpha^(-1) beta^(-1)) is equal to