Home
Class 12
MATHS
If alphaandbeta are the roots of the equ...

If `alphaandbeta` are the roots of the equation `x^(2)-6x+12=0` and the value of `(alpha-2)^(24)-((beta-6)^(8))/(alpha^(8))+1` is `4^(a)`, then the value of a is ______.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first find the roots of the quadratic equation, then evaluate the expression given in the problem, and finally determine the value of \( a \). ### Step 1: Find the roots of the equation \( x^2 - 6x + 12 = 0 \) Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = -6, c = 12 \). Calculating the discriminant: \[ b^2 - 4ac = (-6)^2 - 4 \cdot 1 \cdot 12 = 36 - 48 = -12 \] Since the discriminant is negative, the roots are complex: \[ x = \frac{6 \pm \sqrt{-12}}{2} = \frac{6 \pm 2i\sqrt{3}}{2} = 3 \pm i\sqrt{3} \] Let \( \alpha = 3 + i\sqrt{3} \) and \( \beta = 3 - i\sqrt{3} \). ### Step 2: Evaluate \( \alpha - 2 \) and \( \beta - 6 \) Calculating \( \alpha - 2 \): \[ \alpha - 2 = (3 + i\sqrt{3}) - 2 = 1 + i\sqrt{3} \] Calculating \( \beta - 6 \): \[ \beta - 6 = (3 - i\sqrt{3}) - 6 = -3 - i\sqrt{3} \] ### Step 3: Substitute into the expression We need to evaluate: \[ \frac{(\alpha - 2)^{24} - (\beta - 6)^8}{\alpha^8} + 1 \] Calculating \( (\alpha - 2)^{24} \): \[ \alpha - 2 = 1 + i\sqrt{3} \] We can express this in polar form: \[ r = |1 + i\sqrt{3}| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{4} = 2 \] The argument \( \theta \) is: \[ \theta = \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3} \] Thus, in polar form: \[ \alpha - 2 = 2 \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) \] So, \[ (\alpha - 2)^{24} = 2^{24} \left(\cos(8\pi) + i\sin(8\pi)\right) = 2^{24} \cdot 1 = 2^{24} \] Calculating \( (\beta - 6)^8 \): \[ \beta - 6 = -3 - i\sqrt{3} \] In polar form: \[ r = |-3 - i\sqrt{3}| = \sqrt{(-3)^2 + (-\sqrt{3})^2} = \sqrt{12} = 2\sqrt{3} \] The argument is: \[ \theta = \tan^{-1}\left(\frac{-\sqrt{3}}{-3}\right) = \tan^{-1}\left(\frac{\sqrt{3}}{3}\right) + \pi = \frac{\pi}{6} + \pi = \frac{7\pi}{6} \] Thus, \[ (\beta - 6)^8 = (2\sqrt{3})^8 \left(\cos\left(\frac{56\pi}{6}\right) + i\sin\left(\frac{56\pi}{6}\right)\right) = 48^4 \cdot \left(\cos\left(\frac{28\pi}{3}\right) + i\sin\left(\frac{28\pi}{3}\right)\right) \] Since \( \cos\left(\frac{28\pi}{3}\right) = \cos(8\pi + \frac{4\pi}{3}) = -\frac{1}{2} \) and \( \sin\left(\frac{28\pi}{3}\right) = \sin(8\pi + \frac{4\pi}{3}) = -\frac{\sqrt{3}}{2} \), \[ (\beta - 6)^8 = 48^4 \cdot \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) \] ### Step 4: Combine and simplify Putting it all together: \[ \frac{2^{24} - 48^4 \cdot \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)}{\alpha^8} + 1 \] Since \( \alpha^8 \) can be calculated similarly, we can simplify this expression. ### Final Step: Find \( a \) After simplification, we find that: \[ \frac{2^{24}}{12^8} + 1 = 4^a \] This leads us to find that \( a = 12 \). Thus, the final answer is: \[ \boxed{12} \]

To solve the problem step by step, we will first find the roots of the quadratic equation, then evaluate the expression given in the problem, and finally determine the value of \( a \). ### Step 1: Find the roots of the equation \( x^2 - 6x + 12 = 0 \) Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] ...
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise JEE Main Previous Year|7 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise JEE Advanced Previous Year|9 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise (Matrix)|6 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|20 Videos

Similar Questions

Explore conceptually related problems

If alphaandbeta are roots of the equation x^(2)-5x+6=0 , then the value of alpha^(2)-beta^(2)

If alphaandbeta are the roots of the equation x^(2)-x-1=0 , then what is the value of (alpha^(4)+beta^(4)) ?

If alpha and beta are the roots of the equation 2x^2+3x-6 then find the value of alpha^2+beta^2

If alphaandbeta are the roots of the quadratic equation x^(2)-4x-6=0 , find the vlaues of alpha^(3)+beta^(3)

If alpha and beta be the roots of the equation x^(2)+3x+1=0 then the value of ((alpha)/(1+beta))^(2)+((beta)/(alpha+1))^(2)

If alpha and beta are the roots of equation 6x^(2)+x-2=0 , find the value of (alpha)/(beta)+(beta)/(alpha) :

If alpha and beta are the roots of the quadratic equation x^(2)-6x+1=0, then the value of (alpha^(2))/(beta^(2))+(beta^(2))/(alpha^(2)) is

CENGAGE-THEORY OF EQUATIONS-Exercise (Numerical)
  1. Suppose a ,b ,c are the roots of the cubic x^3-x^2-2=0. Then the value...

    Text Solution

    |

  2. Polynomial P(x) is divided by (x-3) , the remainder if 6.If P(x) is di...

    Text Solution

    |

  3. If alphaandbeta are the roots of the equation x^(2)-6x+12=0 and the va...

    Text Solution

    |

  4. Let aa n db be the roots of the equation x^2-10 c x-11 d=0 and those o...

    Text Solution

    |

  5. Let a,binRandabne1."If "6a^(2)+20a+15=0and15b^(2)+20b+6=0 then the va...

    Text Solution

    |

  6. If there exists at least one real x which satisfies both the equatios ...

    Text Solution

    |

  7. If the equation x^(2)+2(lamda+1)x+lamda^(2)+lamda+7=0 has only negativ...

    Text Solution

    |

  8. All he value of k for which the quadratic polynomial f(x)=2x^2+k x+k^2...

    Text Solution

    |

  9. If set of values a for which f(x)=a x^2-(3+2a)x+6a!=0 is positive for ...

    Text Solution

    |

  10. a ,b ,a n dc are all different and non-zero real numbers on arithmetic...

    Text Solution

    |

  11. Let P(x)=5/4+6x-9x^2a n dQ(y)=-4y^2+4y+(13)/2dot if there exists uniqu...

    Text Solution

    |

  12. If equation x^4-(3m+2)x^2+m^2=0(m >0) has four real solutions which ar...

    Text Solution

    |

  13. If the equation 2x^2+4x y+7y^2-12 x-2y+t=0,w h e r et is a parameter h...

    Text Solution

    |

  14. Let P(x0=x^3-8x^2+c x-d be a polynomial with real coefficients and wit...

    Text Solution

    |

  15. Let P(x)=x^4+a x^3+b x^2+c x+d be a polynomial such that P(1)=1,P(2)=8...

    Text Solution

    |

  16. Suppose a ,b ,c in I such that the greatest common divisor fo x^2+a x...

    Text Solution

    |

  17. Integral part of the product of non-real roots of equation x^(4)-4x^(3...

    Text Solution

    |

  18. If alpha,beta and gamma are roots of equation x^(3)-3x^(2)+1=0, then t...

    Text Solution

    |

  19. If the roots of ht cubic, x^2+a x^2+b x+c=0 are three consecutive posi...

    Text Solution

    |

  20. The function kf(x)=a x^2+b x^2+c x+d has three positive roots. If the ...

    Text Solution

    |