Home
Class 12
MATHS
Let p ,q be integers and let alpha,beta ...

Let `p ,q` be integers and let `alpha,beta` be the roots of the equation, `x^2-x-1=0,` where `alpha!=beta` . For `n=0,1,2, ,l e ta_n=palpha^n+qbeta^ndot` FACT : If `aa n db` are rational number and `a+bsqrt(5)=0,t h e na=0=bdot` If `a_4=28 ,t h e np+2q=` 7 (b) 21 (c) 14 (d) 12

A

`a_(11) - a_(10)`

B

`a_(11) + a_(10)`

C

`2a_(11) + a_(10)`

D

` a_(11) +2a_(10)`

Text Solution

Verified by Experts

The correct Answer is:
2

Since ` alpha, beta ` be the roots of the equation, ` x^(2) - x - 1= 0` ,
` alpha ^(2) - alpha - 1 = 0 and beta ^(2) - beta - 1 = 0` …(i)
`a_(n) + a_(n-1) = palpha ^(n) + q beta^(n) + palpha ^(n-1) + q beta ^(n-1)`
` = p alpha ^(n) + p alpha ^(n-1) + q beta^(n) + q beta^(n-1)`
` = p alpha ^(n-1) + (alpha +1)+ q beta^(n-1) + (beta+ 1)`
` = p alpha ^(n-1) . alpha ^(2) + q beta^(n-1) . beta^(2)` [Ising (i)]
` p lapha ^(n+1) + q beta ^(n+1)`
` a_(n+ 1)`
So, ` a_(12) = a_(11) + a_(10)`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise JEE Main Previous Year|7 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|20 Videos

Similar Questions

Explore conceptually related problems

Let A,B be integers and let alpha,beta be the roots of the equation,x^(2)-x-1=0, where alpha!=beta For n=0,1,2,..., Let a_(n)=A alpha^(-n)+B beta^(-n)

Let p,q be integers and let alpha,beta be the roots of the equation,x^(2)-x-1=0, where alpha!=beta. For n=0,1,2,..., let a_(n)=p alpha^(n)+q beta^(n). FACT : If a and b are rational number and a+b sqrt(5)=0, then a=0=b. If a_(4)=28, then p+2q=7 (b) 21( c) 14 (d) 12

Let p ,q be integers and let alpha,beta be the roots of the equation, x^2-x-1=0, where alpha!=beta . For n=0,1,2, .....,l e ta_n=palpha^n+qbeta^ndot FACT : If aa n db are rational number and a+bsqrt(5)=0,t h e na=0=bdot a_(12)= (a)a_(11)+a_(10) (b) a_(11)-a_(10) (c)a_(11)+2a_(10) (d) 2a_(11)+a_(10)

Let p,q be integers and let alpha,beta be the roots of the equation x^(2)-2x+3=0 where alpha!=beta For n=0,1,2,......, Let alpha_(n)=p alpha^(n)+q beta^(n) value alpha_(9)=

Let alpha and beta be the roots of the equation 5x^2+6x-2=0 . If S_n=alpha^n+beta^n, n=1,2,3.... then

If alpha and beta are the roots of the equation x^(2)-ax+b=0 and A_(n)=alpha^(n)+beta^(n)

Let alpha and beta be the roots of the equation 5x^2 + 6x-2 =0 if S_(n ) = alpha ^(n) + beta^(n) , n= 1,2,3 ..,, then :