Home
Class 12
MATHS
Let p ,q be integers and let alpha,beta ...

Let `p ,q` be integers and let `alpha,beta` be the roots of the equation, `x^2-x-1=0,` where `alpha!=beta` . For `n=0,1,2, ,l e ta_n=palpha^n+qbeta^ndot` FACT : If `aa n db` are rational number and `a+bsqrt(5)=0,t h e na=0=bdot` If `a_4=28 ,t h e np+2q=` 7 (b) 21 (c) 14 (d) 12

A

21

B

14

C

7

D

12

Text Solution

Verified by Experts

The correct Answer is:
4

`a_(4) = a_(3) + a_(2)`
` = a_(2) + a_(1) + a_(1) + a_(0)`
`a_(1) + a_(0) + 2a_(1) + a_(0)`
` 2a_(0) + 3a_(1) = 2(p+ q) + 3 (p alpha + q beta)`
` = 2(p + q) + 3 (p alpha + q) (1 - alpha))`
= ` (2p + 5q = 28 and 3p - 3q = 0 as p,q in Q and alpha ` is irrational .
` therefore p = q = 4 `
`therefore =P + 2q = 12 `
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise JEE Main Previous Year|7 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|20 Videos

Similar Questions

Explore conceptually related problems

Let A,B be integers and let alpha,beta be the roots of the equation,x^(2)-x-1=0, where alpha!=beta For n=0,1,2,..., Let a_(n)=A alpha^(-n)+B beta^(-n)

Let p,q be integers and let alpha,beta be the roots of the equation,x^(2)-x-1=0, where alpha!=beta. For n=0,1,2,..., let a_(n)=p alpha^(n)+q beta^(n). FACT : If a and b are rational number and a+b sqrt(5)=0, then a=0=b. If a_(4)=28, then p+2q=7 (b) 21( c) 14 (d) 12

Let p ,q be integers and let alpha,beta be the roots of the equation, x^2-x-1=0, where alpha!=beta . For n=0,1,2, .....,l e ta_n=palpha^n+qbeta^ndot FACT : If aa n db are rational number and a+bsqrt(5)=0,t h e na=0=bdot a_(12)= (a)a_(11)+a_(10) (b) a_(11)-a_(10) (c)a_(11)+2a_(10) (d) 2a_(11)+a_(10)

Let p,q be integers and let alpha,beta be the roots of the equation x^(2)-2x+3=0 where alpha!=beta For n=0,1,2,......, Let alpha_(n)=p alpha^(n)+q beta^(n) value alpha_(9)=

Let alpha and beta be the roots of the equation 5x^2+6x-2=0 . If S_n=alpha^n+beta^n, n=1,2,3.... then

If alpha and beta are the roots of the equation x^(2)-ax+b=0 and A_(n)=alpha^(n)+beta^(n)

Let alpha and beta be the roots of the equation 5x^2 + 6x-2 =0 if S_(n ) = alpha ^(n) + beta^(n) , n= 1,2,3 ..,, then :