Home
Class 12
MATHS
if alpha and beta are imaginary cube roo...

if `alpha` and `beta` are imaginary cube root of unity then prove `(alpha)^4 + (beta)^4 + (alpha)^-1 . (beta)^-1 = 0`

Text Solution

Verified by Experts

The correct Answer is:
0

Complex cube roots of unity are `omega,omega^(2)`. Let `alpha = omega, beta = omega^(2)`. Thne
`alpha + beta^(2)+ alpha^(-1)beta^(-1)= omega^(4) +(omega^(2))^(4) +(omega^(-1))(omega^(2))^(-1)`
`omega +omega^(2) + omega^(2) + 1=0`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.5|12 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.6|10 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.3|7 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

If a and b are imaginary cube roots of unity, then alpha^(n)+beta^(n) is equal to

(i) If alpha,beta be the imaginary cube root of unity, then show that alpha^(4)+beta^(4)+alpha^(-1)beta^(-1)=0

If alpha and beta are the complex cube roots of unity, then what is the vlaue of (1+alpha)(1+beta)(1+alpha^(2))(1+beta^(2)) ?

If alpha, beta, gamma are cube roots of unity, then the value of |(e^(alpha),e^(2alpha),(e^(3alpha)-1)),(e^(beta),e^(2beta),(e^(3beta)-1)),(e^(gamma),e^(2gamma),(e^(3gamma)-1))|=

If alpha,beta are the complex cube roots of unity then alpha^(100)+beta^(100)+(1)/(alpha^(100)xx beta^(100))=

If alpha and beta be the roots of the equation x^2-1=0 , then show that. alpha+beta=(1)/(alpha)+(1)/(beta)

If alpha, beta are the roots of x^(2) + px + q = 0, and omega is a cube root of unity, then value of (omega alpha + omega^(2) beta) (omega^(2) alpha + omega beta) is

If alpha and beta are the roots of 4x^(2) + 3x +7 =0 then the value of 1/alpha + 1/beta is