Home
Class 12
MATHS
Write the comple number in a + ib form u...

Write the comple number in a + ib form unsing cube roots of unity: (a) `(-(1)/(2) + sqrt(3)/(2)i)^(1000)`(b)If `z =(sqrt(3) + i)^(17)/((1-i)^(50))` (c) `(i + sqrt(3))^(100) + (i+ sqrt(3))^(100) + 2^(100)`

Text Solution

Verified by Experts

The correct Answer is:
`omega = - (1)/(2) + sqrt(3)/(2)i`" " (b) `(1)/(2^(8))((-1-isqrt(3))/(2))` " "(c) 0

(a) Here, `-1//2 + (1//2) isqrt(3)` is one of the tow imaginary cube roots of unity. If the we denote it b `omega`, then
`omega^(100) = omega^(999) omega=(omega^(3))^(333) omega = omega = -(1)/(2) + (sqrt(3))/(2) i`
`z =(sqrt(3) + i)^(17)/((1-i)^(50))`
`= (1)/(i^(17))((isqrt(3) +i^(2))^(17))/([(1-i)^(2) ]^(25))`
`= (2^(17))/(i) (((isqrt(3)-1)/(2))^(7))/(-2i)^(25)`
`=(1)/(2^(8)) (omega)^(17)`
`= (1)/(2^(8)) (omega)^(2)`
`= (1)/(2^(8)) ((-1-isqrt(3))/(2))`
(c) `(i+sqrt(3))^(100) + (i-sqrt(3))^(100) + 2^(100)`
`=((i^(2) + isqrt(3))/(i))^(100) + ((i^(2)-isqrt(3))/(i))^(100) + 2^(100)`
`= (2^(100))/(i^(100)) ((-1+isqrt(3))/(2))^(100) + (2^(100))/(i^(100)) ((-1-isqrt(3))/(2)) +2^(100)`
`= 2^(100) (omega) ^(100) + 2^(100) (omega^(2))^(100) + 2^(100)`
`=2^(100) (omega^(100) + omega^(200)+1)`
` = 2^(100) (omega + omega^(2) + 1) =0`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.5|12 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.6|10 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.3|7 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

The value of (i+sqrt(3))^(100)+(i-sqrt(3))^(100)+2^(100) is

((-1+sqrt(3)i)/(2))^(100)+((-1-sqrt(3)i)/(2))^(100)=

If z = ((1)/(sqrt(3)) + (1)/(2)i)^(7) + ((1)/(sqrt(3))-(1)/(2)i)^(7) , then

((-1-i)/(sqrt(2)))^(100) equals

(sqrt(3)+i)/((1+i)(1+sqrt(3)i))|=

If w is the cube root of unity then find the value ((-1+i sqrt(3))/(2))^(18)+((-1-i sqrt(3))/(2))^(18)

x+iy=(1-i sqrt(3))^(100), then (x,y)=

Prove that ((i+sqrt3)/2)^100+((i-sqrt3)/2)^100 +1=0.

the value of ((1+i sqrt(3))/(1-i sqrt(3)))^(6)+((1-i sqrt(3))/(1+i sqrt(3)))^(6) is