Home
Class 12
MATHS
If z + z^(-1)= 1, then find the value of...

If `z + z^(-1)= 1`, then find the value of `z^(100) + z^(-100)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( z + z^{-1} = 1 \) and find the value of \( z^{100} + z^{-100} \), we can follow these steps: ### Step 1: Rewrite the equation Given: \[ z + \frac{1}{z} = 1 \] Multiply both sides by \( z \) (assuming \( z \neq 0 \)): \[ z^2 + 1 = z \] ### Step 2: Rearrange into standard quadratic form Rearranging gives: \[ z^2 - z + 1 = 0 \] ### Step 3: Apply the quadratic formula Using the quadratic formula \( z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1 \), \( b = -1 \), and \( c = 1 \): \[ z = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] \[ z = \frac{1 \pm \sqrt{1 - 4}}{2} \] \[ z = \frac{1 \pm \sqrt{-3}}{2} \] \[ z = \frac{1 \pm i\sqrt{3}}{2} \] ### Step 4: Identify the roots The roots are: \[ z_1 = \frac{1 + i\sqrt{3}}{2}, \quad z_2 = \frac{1 - i\sqrt{3}}{2} \] ### Step 5: Use De Moivre's Theorem To find \( z^{100} + z^{-100} \), we note that \( z_1 \) and \( z_2 \) can be expressed in polar form. The modulus \( r \) of \( z_1 \) is: \[ r = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1 \] The argument \( \theta \) is: \[ \theta = \tan^{-1}\left(\frac{\sqrt{3}/2}{1/2}\right) = \frac{\pi}{3} \] Thus, \( z_1 = e^{i\pi/3} \) and \( z_2 = e^{-i\pi/3} \). ### Step 6: Calculate \( z^{100} + z^{-100} \) Using De Moivre's Theorem: \[ z_1^{100} = \left(e^{i\pi/3}\right)^{100} = e^{i(100 \cdot \frac{\pi}{3})} = e^{i\frac{100\pi}{3}} = e^{i(33\pi + \frac{\pi}{3})} = e^{i\frac{\pi}{3}} = z_1 \] \[ z_2^{100} = \left(e^{-i\pi/3}\right)^{100} = e^{-i(100 \cdot \frac{\pi}{3})} = e^{-i\frac{100\pi}{3}} = e^{-i(33\pi + \frac{\pi}{3})} = e^{-i\frac{\pi}{3}} = z_2 \] Thus: \[ z^{100} + z^{-100} = z_1 + z_2 \] ### Step 7: Find the sum From the roots: \[ z_1 + z_2 = \frac{1 + i\sqrt{3}}{2} + \frac{1 - i\sqrt{3}}{2} = 1 \] ### Conclusion Therefore, the value of \( z^{100} + z^{-100} \) is: \[ \boxed{1} \]

To solve the equation \( z + z^{-1} = 1 \) and find the value of \( z^{100} + z^{-100} \), we can follow these steps: ### Step 1: Rewrite the equation Given: \[ z + \frac{1}{z} = 1 \] Multiply both sides by \( z \) (assuming \( z \neq 0 \)): ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.5|12 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.6|10 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.3|7 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

if |z|=1, then find the value of (1+z)/(1-z) .

If sin ^(-1) x + sin ^(-1) y + sin ^(-1) z = (3pi)/(2) then the value of x ^(100) + y ^(100) + z ^(100) - (3)/( x ^(101) + y^(101) + z ^(101)) is

If (z-1)/(z+1) is a purely imaginary number (z ne - 1) , then find the value of |z| .

If z=(1)/(2)(i sqrt(3)-1), then find the value of (z-z^(2)+2z^(3))(2-z+z^(2))

If z=1-i find the value of z^(6)-z^(4)+z^(2)-1

If z is a nonreal root of root(7)(-1), then find the value of z^(86)+z^(175)+z^(289)

If z^(2)+(1)/(z^(2))=14, find the value of z^(3)+(1)/(z^(3))

If z is nonreal root of [-1]^((1)/(7)) then,find the value of z^(86)+z^(175)+z^(289)