Home
Class 12
MATHS
If |z1-z0|=z2-z1=pi//2 , then find z0dot...

If `|z_1-z_0|=z_2-z_1=pi//2` , then find `z_0dot`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2){(i +1)z_(1) +(1-i)z_(2)}`

Here, `|(z_(2)-z_(0))/(z_(0)-z_(1))| = 1 and amp ((z_(2)-z_(0))/(z_(0)-z_(1))) = (pi)/(2)`
`therefore (z_(2)-z_(0))/(z_(0)-z_(1)) = 1{cos.(pi)/(2) + i sin .(pi)/(2)} =i`
`rArr z_(2) -z_(0) = iz_(0) = iz_(0)`
`rArr z_(2)+iz_(1) = (i+1)z_(0)`
`or z_(0) = (z_(2) + iz_(1))/(1+i)`
`=((z_(2) + iz_(1))(1-i))/(1^(2)+ 1^(2))`
`=(1)/(2){(i+ 1)z_(1)+(1-i)z_(2)}`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.7|6 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.8|11 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.5|12 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

If |z_(1)-z_(0)|=|z_(2)-z_(0)|=a and amp((z_(2)-z_(0))/(z_(0)-z_(1)))=(pi)/(2), then find z_(0)

Statement I: If |z_1+z_2|=|z_1|+|z_2|, then Im(z_1/z_2)=0 (z_1,z_2 !=0) Statement II: If |z_1+z_2|=|z_1|+|z_2| then origin, z_1, z_2 are collinear with 'z_1' and z_2 lies on the same side of the origin (z_1,z_2 !=0)

If arg((z_(1))/(z_(2)))=(pi)/(2), then find the value of |(z_(1)+z_(2))/(z_(1)-z_(2))|

If z_(1)andz_(2) both satisfy z+ddot z=2|z-1| and arg(z_(1)-z_(2))=(pi)/(4), then find Im(z_(1)+z_(2))

If z_(1)&z_(2) are two complex numbers & if arg (z_(1)+z_(2))/(z_(1)-z_(2))=(pi)/(2) but |z_(1)+z_(2)|!=|z_(1)-z_(2)| then the figure formed by the points represented by 0,z_(1),z_(2)&z_(1)+z_(2) is:

If |z_1+z_2| = |z_1-z_2| , prove that amp z_1 - amp z_2 = pi/2 .

If 2z_(1)-3z_(2)+z_(3)=0, then z_(1),z_(2) and z_(3) are represented by

If z_1,z_2,z_3 be the vertices of a triangle ABC such that |z_1|=|z_2|=|z_3| and |z_1+z_2|^2= |z_1|^2+|z_2|^2, then |arg, ((z_3-z_1)/(z_3-z_2))|= (A) pi/2 (B) pi/3 (C) pi/6 (D) pi/4

If z_1,z_2,z_3,z_4 be the vertices of a quadrilaterla taken in order such that z_1+z_2=z_2+z_3 and |z_1-z_3|=|z_2-z_4| then arg ((z_1-z_2)/(z_3-z_2))= (A) pi/2 (B) +- pi/2 (C) pi/3 (D) pi/6