Home
Class 12
MATHS
If i z^4+1=0, then prove that z can take...

If `i z^4+1=0,` then prove that `z` can take the value `cospi//8+is inpi//8.`

Text Solution

Verified by Experts

`iz^(4) = -1`
`z^(4) = (-1)/(i)`
`or z^(4) =i`
`or z = (i) ^(1//4)`
`or z = (0+i)^(1//4)`
` or z=(0+i)^(1//4)`
`or z = (cos.(pi)/(2) + isin.(pi)/(2))^(1//4) = cos.(pi)/(8)+isin.(pi)/(8)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.8|11 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.9|8 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.6|10 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

If iz^(4)+1=0, then prove that z can take the value cos pi/8+i sin pi/8

If z^(4)=i, then z can take the value

If z_(4)+1=0,"where"i=sqrt(-1) then z can take the value

If z=cospi/4+isinpi/6 then

If |z + i| = |z - i|, prove that z is real.

If |z-1| + |z + 3| le 8 , then prove that z lies on the circle.

If |z-1| <3 , prove that |iz+3-5i| < 8 .

If |z-1|+|z+3|<=8, then the range of values of |z-4| is

If z be a complex number satisfying |z-4+8i|=4 , then the least and the greatest value of |z+2| are respectively (where i=sqrt(-i) )